These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32674455)

  • 1. Interleaved Array Transducer with Polarization Inversion Technique to Implement Ultrasound Tissue Harmonic Imaging.
    Park CY; Sung JH; Jeong EY; Lee HS; Jeong JS
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32674455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravascular Ultrasound Transducer by Using Polarization Inversion Technique for Tissue Harmonic Imaging: Modeling and Experiments.
    Sung JH; Jeong EY; Jeong JS
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3380-3391. PubMed ID: 32286955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization Inverted Ultrasound Transducer Based on Composite Structure for Tissue Harmonic and Frequency Compound Imaging.
    Choi BE; Lee HS; Sung JH; Jeong EY; Park CY; Jeong JS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):273-282. PubMed ID: 34464259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic.
    Lee J; Moon JY; Chang JH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Dual-Frequency Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Tissue Harmonic Imaging.
    Lee J; Shin EJ; Lee C; Chang JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1571-1582. PubMed ID: 29994203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of High-Frequency (>60 MHz) Intravascular Ultrasound (IVUS) Transducer by Using Asymmetric Electrodes for Improved Beam Profile.
    Sung JH; Jeong JS
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30551639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-harmonic imaging: development of an interleaved phased-array transducer.
    van Neer PL; Matte G; Danilouchkine MG; Prins C; van den Adel F; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):455-68. PubMed ID: 20178912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.
    Wong CM; Chen Y; Luo H; Dai J; Lam KH; Chan HL
    Ultrasonics; 2017 Jan; 73():181-186. PubMed ID: 27664869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new ultrasonic transducer for improved contrast nonlinear imaging.
    Bouakaz A; Cate Ft; de Jong N
    Phys Med Biol; 2004 Aug; 49(16):3515-25. PubMed ID: 15446784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic guided wave propagation in a periodic array of multi-layered piezoelectric plates with finite cross-sections.
    Cortes DH; Datta SK; Mukdadi OM
    Ultrasonics; 2010 Mar; 50(3):347-56. PubMed ID: 19732930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super harmonic imaging: a new imaging technique for improved contrast detection.
    Bouakaz A; Frigstad S; Ten Cate FJ; de Jong N
    Ultrasound Med Biol; 2002 Jan; 28(1):59-68. PubMed ID: 11879953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer.
    Hou C; Fei C; Li Z; Zhang S; Man J; Chen D; Wu R; Li D; Yang Y; Feng W
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):475-481. PubMed ID: 34288870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology.
    Matte GM; Van Neer PL; Danilouchkine MG; Huijssen J; Verweij MD; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):533-46. PubMed ID: 21429845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of broadband graded ultrasonic transducers with rectangular kerfs.
    Guo H; Cannata JM; Zhou Q; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2096-102. PubMed ID: 16422423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Phase-Canceled Backing Layer for Ultrasound Linear Array Transducer: Modeling and Experimental Verification.
    Kwon DS; Sung JH; Park CY; Jeong EY; Jeong JS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):770-778. PubMed ID: 31689189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Piezoelectric Micromachined Ultrasonic Transducer With a Resonant Cavity.
    Zhu W; Wang L; Wu Z; Liu W; Sun C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):340-349. PubMed ID: 34665723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue harmonic synthetic aperture ultrasound imaging.
    Hemmsen MC; Rasmussen JH; Jensen JA
    J Acoust Soc Am; 2014 Oct; 136(4):2050-6. PubMed ID: 25324103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment.
    Lee J; Chang JH
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3146-3155. PubMed ID: 30835204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of a deformable array transducer.
    Ries LL; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1352-63. PubMed ID: 18244331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.