These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32674475)
1. RNAseq Analysis Reveals Altered Expression of Key Ion Transporters Causing Differential Uptake of Selective Ions in Canola ( Ulfat M; Athar HU; Khan ZD; Kalaji HM Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32674475 [TBL] [Abstract][Full Text] [Related]
2. Photosynthesis and Salt Exclusion Are Key Physiological Processes Contributing to Salt Tolerance of Canola ( Gul HS; Ulfat M; Zafar ZU; Haider W; Ali Z; Manzoor H; Afzal S; Ashraf M; Athar HU Genes (Basel); 2022 Dec; 14(1):. PubMed ID: 36672744 [TBL] [Abstract][Full Text] [Related]
3. A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Saadia M; Jamil A; Akram NA; Ashraf M Molecules; 2012 May; 17(5):5803-15. PubMed ID: 22592086 [TBL] [Abstract][Full Text] [Related]
4. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Naheed R; Aslam H; Kanwal H; Farhat F; Abo Gamar MI; Al-Mushhin AAM; Jabborova D; Javed Ansari M; Shaheen S; Aqeel M; Noman A; Hessini K Saudi J Biol Sci; 2021 Oct; 28(10):5469-5479. PubMed ID: 34588857 [TBL] [Abstract][Full Text] [Related]
5. Exogenous melatonin regulates chromium stress-induced feedback inhibition of photosynthesis and antioxidative protection in Brassica napus cultivars. Ayyaz A; Farooq MA; Dawood M; Majid A; Javed M; Athar HU; Bano H; Zafar ZU Plant Cell Rep; 2021 Nov; 40(11):2063-2080. PubMed ID: 34417832 [TBL] [Abstract][Full Text] [Related]
6. Alleviating salinity stress in canola (Brassica napus L.) through exogenous application of salicylic acid. Ilyas M; Maqsood MF; Shahbaz M; Zulfiqar U; Ahmad K; Naz N; Ali MF; Ahmad M; Ali Q; Yong JWH; Ali HM BMC Plant Biol; 2024 Jun; 24(1):611. PubMed ID: 38926637 [TBL] [Abstract][Full Text] [Related]
7. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars. Chakraborty K; Bhaduri D; Meena HN; Kalariya K Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338 [TBL] [Abstract][Full Text] [Related]
8. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture. Ashraf MA; Ashraf M Environ Sci Pollut Res Int; 2016 Apr; 23(7):6227-43. PubMed ID: 26611626 [TBL] [Abstract][Full Text] [Related]
9. Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. Ashraf MY; Azhar N; Ashraf M; Hussain M; Arshad M J Environ Biol; 2011 Sep; 32(5):659-66. PubMed ID: 22319885 [TBL] [Abstract][Full Text] [Related]
10. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Liu J; Gao H; Wang X; Zheng Q; Wang C; Wang X; Wang Q Plant Biol (Stuttg); 2014 Mar; 16(2):440-50. PubMed ID: 24033882 [TBL] [Abstract][Full Text] [Related]
11. Canola ( Sun L; Cao X; Du J; Wang Y; Zhang F Funct Plant Biol; 2024 Aug; 51():. PubMed ID: 39088691 [TBL] [Abstract][Full Text] [Related]
12. Difference in sodium spatial distribution in the shoot of two canola cultivars under saline stress. Yang Y; Zheng Q; Liu M; Long X; Liu Z; Shen Q; Guo S Plant Cell Physiol; 2012 Jun; 53(6):1083-92. PubMed ID: 22514091 [TBL] [Abstract][Full Text] [Related]
13. Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. Guo H; Li S; Min W; Ye J; Hou Z PLoS One; 2019; 14(12):e0226776. PubMed ID: 31869397 [TBL] [Abstract][Full Text] [Related]
14. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Challabathula D; Analin B; Mohanan A; Bakka K J Plant Physiol; 2022 Jan; 268():153583. PubMed ID: 34871988 [TBL] [Abstract][Full Text] [Related]
15. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. Yousefirad S; Soltanloo H; Ramezanpour SS; Zaynali Nezhad K; Shariati V PLoS One; 2020; 15(3):e0229513. PubMed ID: 32187229 [TBL] [Abstract][Full Text] [Related]
16. Influence of nickel stress on growth and some important physiological/biochemical attributes in some diverse canola (Brassica napus L.) cultivars. Ali MA; Ashraf M; Athar HR J Hazard Mater; 2009 Dec; 172(2-3):964-9. PubMed ID: 19699032 [TBL] [Abstract][Full Text] [Related]
17. Alkaline Salt Inhibits Seed Germination and Seedling Growth of Canola More Than Neutral Salt. Wang W; Zhang F; Sun L; Yang L; Yang Y; Wang Y; Siddique KHM; Pang J Front Plant Sci; 2022; 13():814755. PubMed ID: 35154227 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of canola root inoculated with bacteria under salt stress. Banaei-Asl F; Bandehagh A; Uliaei ED; Farajzadeh D; Sakata K; Mustafa G; Komatsu S J Proteomics; 2015 Jun; 124():88-111. PubMed ID: 25896739 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica. napus L.) and Rice (Oryza sativa L.) Plants. Gao L; Liu M; Wang M; Shen Q; Guo S Plant Cell Physiol; 2016 Nov; 57(11):2323-2333. PubMed ID: 27519313 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis of canola leaves under salinity stress. Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]