These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32674475)
21. Ionic selectivity and coordinated transport of Na Chakraborty K; Chattaopadhyay K; Nayak L; Ray S; Yeasmin L; Jena P; Gupta S; Mohanty SK; Swain P; Sarkar RK Planta; 2019 Nov; 250(5):1637-1653. PubMed ID: 31399792 [TBL] [Abstract][Full Text] [Related]
22. Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola ( Ayyaz A; Amir M; Umer S; Iqbal M; Bano H; Gul HS; Noor Y; Kanwal A; Khalid A; Javed M; Athar HR; Zafar ZU; Farooq MA Heliyon; 2020 Jul; 6(7):e04364. PubMed ID: 32695901 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome and Metabonomic Analysis of Chen Y; Zhang S; Du S; Jiang J; Wang G Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893048 [TBL] [Abstract][Full Text] [Related]
24. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940 [TBL] [Abstract][Full Text] [Related]
25. The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl- and K+ ions in relation to salinity. Almodares A; Hadi MR; Kholdebarin B; Samedani B; Kharazian ZA J Environ Biol; 2014 Jul; 35(4):733-9. PubMed ID: 25004761 [TBL] [Abstract][Full Text] [Related]
26. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. Cai ZQ; Gao Q BMC Plant Biol; 2020 Feb; 20(1):70. PubMed ID: 32050903 [TBL] [Abstract][Full Text] [Related]
27. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524 [TBL] [Abstract][Full Text] [Related]
28. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781 [TBL] [Abstract][Full Text] [Related]
29. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Zheng Y; Jia A; Ning T; Xu J; Li Z; Jiang G J Plant Physiol; 2008 Sep; 165(14):1455-65. PubMed ID: 18313170 [TBL] [Abstract][Full Text] [Related]
30. Transcriptomic analysis of differentially expressed genes in leaves and roots of two alfalfa (Medicago sativa L.) cultivars with different salt tolerance. Bhattarai S; Fu YB; Coulman B; Tanino K; Karunakaran C; Biligetu B BMC Plant Biol; 2021 Oct; 21(1):446. PubMed ID: 34610811 [TBL] [Abstract][Full Text] [Related]
31. Root Na Wang CF; Han GL; Qiao ZQ; Li YX; Yang ZR; Wang BS Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406886 [TBL] [Abstract][Full Text] [Related]
32. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Rossi L; Zhang W; Lombardini L; Ma X Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725 [TBL] [Abstract][Full Text] [Related]
33. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Banaei-Asl F; Farajzadeh D; Bandehagh A; Komatsu S Biochim Biophys Acta; 2016 Sep; 1864(9):1222-1236. PubMed ID: 27137672 [TBL] [Abstract][Full Text] [Related]
34. Enhancing germination and growth of canola (Brassica napus L.) through hydropriming and NaCl priming. BiBi R; Elahi NN; Danish S; Alahmadi TA; Ansari MJ Sci Rep; 2024 Jun; 14(1):14026. PubMed ID: 38890414 [TBL] [Abstract][Full Text] [Related]
35. Individual Rather Than Simultaneous Priming with Glutathione and Putrescine Reduces Chromium Cr Jahan A; Iqbal M; Malik A Bull Environ Contam Toxicol; 2021 Sep; 107(3):427-432. PubMed ID: 33837795 [TBL] [Abstract][Full Text] [Related]
36. Salt‑responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress. Wang W; Pang J; Zhang F; Sun L; Yang L; Fu T; Guo L; Siddique KHM Sci Rep; 2022 Jan; 12(1):1666. PubMed ID: 35102232 [TBL] [Abstract][Full Text] [Related]
37. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. Chakraborty K; Bose J; Shabala L; Shabala S J Exp Bot; 2016 Aug; 67(15):4611-25. PubMed ID: 27340231 [TBL] [Abstract][Full Text] [Related]
38. Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfalfa cultivars. Xiong X; Liu N; Wei YQ; Bi YX; Luo JC; Xu RX; Zhou JQ; Zhang YJ Plant Physiol Biochem; 2018 Nov; 132():434-444. PubMed ID: 30290335 [TBL] [Abstract][Full Text] [Related]
39. Molecular response of canola to salt stress: insights on tolerance mechanisms. Shokri-Gharelo R; Noparvar PM PeerJ; 2018; 6():e4822. PubMed ID: 29844974 [TBL] [Abstract][Full Text] [Related]
40. Effect of some antioxidants on canola plants grown under soil salt stress condition. Sakr MT; Arafa AA Pak J Biol Sci; 2009 Apr; 12(7):582-8. PubMed ID: 19580015 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]