These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 32674684)
41. Morphogenesis of the secondary palate in mouse embryos with special reference to the development of rugae. Sakamoto MK; Nakamura K; Handa J; Kihara T; Tanimura T Anat Rec; 1989 Mar; 223(3):299-310. PubMed ID: 2923281 [TBL] [Abstract][Full Text] [Related]
42. The etiology of cleft palate formation in BMP7-deficient mice. Kouskoura T; Kozlova A; Alexiou M; Blumer S; Zouvelou V; Katsaros C; Chiquet M; Mitsiadis TA; Graf D PLoS One; 2013; 8(3):e59463. PubMed ID: 23516636 [TBL] [Abstract][Full Text] [Related]
43. A histological study on the prenatal development of the palatal rugae in the white rat. Motabagani MA Ital J Anat Embryol; 2006; 111(2):97-104. PubMed ID: 16981398 [TBL] [Abstract][Full Text] [Related]
46. Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence. Richardson RJ; Dixon J; Jiang R; Dixon MJ Hum Mol Genet; 2009 Jul; 18(14):2632-42. PubMed ID: 19439425 [TBL] [Abstract][Full Text] [Related]
47. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion. Britto JA; Evans RD; Hayward RD; Jones BM Cleft Palate Craniofac J; 2002 May; 39(3):332-40. PubMed ID: 12019011 [TBL] [Abstract][Full Text] [Related]
48. Epigenetic regulation of Sox4 during palate development. Seelan RS; Mukhopadhyay P; Warner DR; Webb CL; Pisano M; Greene RM Epigenomics; 2013 Apr; 5(2):131-46. PubMed ID: 23566091 [TBL] [Abstract][Full Text] [Related]
49. PDGFR-alpha signaling is critical for tooth cusp and palate morphogenesis. Xu X; Bringas P; Soriano P; Chai Y Dev Dyn; 2005 Jan; 232(1):75-84. PubMed ID: 15543606 [TBL] [Abstract][Full Text] [Related]
50. Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression. He F; Xiong W; Wang Y; Li L; Liu C; Yamagami T; Taketo MM; Zhou C; Chen Y Dev Biol; 2011 Feb; 350(2):511-9. PubMed ID: 21185284 [TBL] [Abstract][Full Text] [Related]
51. YAP/TAZ Regulate Elevation and Bone Formation of the Mouse Secondary Palate. Goodwin AF; Chen CP; Vo NT; Bush JO; Klein OD J Dent Res; 2020 Nov; 99(12):1387-1396. PubMed ID: 32623954 [TBL] [Abstract][Full Text] [Related]
52. Ezh2-dependent methylation in oral epithelia promotes secondary palatogenesis. Sun B; Reynolds K; Saha SK; Zhang S; McMahon M; Zhou CJ Birth Defects Res; 2023 Nov; 115(19):1851-1865. PubMed ID: 37435868 [TBL] [Abstract][Full Text] [Related]
53. Patterning of palatal rugae through sequential addition reveals an anterior/posterior boundary in palatal development. Pantalacci S; Prochazka J; Martin A; Rothova M; Lambert A; Bernard L; Charles C; Viriot L; Peterkova R; Laudet V BMC Dev Biol; 2008 Dec; 8():116. PubMed ID: 19087265 [TBL] [Abstract][Full Text] [Related]
55. Craniofacial expression of human and murine TBX22 correlates with the cleft palate and ankyloglossia phenotype observed in CPX patients. Braybrook C; Lisgo S; Doudney K; Henderson D; Marçano AC; Strachan T; Patton MA; Villard L; Moore GE; Stanier P; Lindsay S Hum Mol Genet; 2002 Oct; 11(22):2793-804. PubMed ID: 12374769 [TBL] [Abstract][Full Text] [Related]
56. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Zhou J; Gao Y; Lan Y; Jia S; Jiang R Development; 2013 Dec; 140(23):4709-18. PubMed ID: 24173808 [TBL] [Abstract][Full Text] [Related]
57. Prenatal development of rugae palatinae in mice: scanning electron microscopic and histologic studies. Peterková R; Klepácek I; Peterka M J Craniofac Genet Dev Biol; 1987; 7(2):169-89. PubMed ID: 3624420 [TBL] [Abstract][Full Text] [Related]
58. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342 [TBL] [Abstract][Full Text] [Related]
59. Genome-wide Identification of Foxf2 Target Genes in Palate Development. Xu J; Liu H; Lan Y; Park JS; Jiang R J Dent Res; 2020 Apr; 99(4):463-471. PubMed ID: 32040930 [TBL] [Abstract][Full Text] [Related]
60. Tbx22null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Pauws E; Hoshino A; Bentley L; Prajapati S; Keller C; Hammond P; Martinez-Barbera JP; Moore GE; Stanier P Hum Mol Genet; 2009 Nov; 18(21):4171-9. PubMed ID: 19648291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]