BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 32675233)

  • 1. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth.
    Culley C; Vijayakumar S; Zampieri G; Angione C
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18869-18879. PubMed ID: 32675233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a hybrid model-driven platform based on flux balance analysis and a machine learning pipeline for biosystem design.
    Wu D; Xu F; Xu Y; Huang M; Li Z; Chu J
    Synth Syst Biotechnol; 2024 Mar; 9(1):33-42. PubMed ID: 38234412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology.
    Paklao T; Suratanee A; Plaimas K
    BMC Bioinformatics; 2023 Dec; 24(1):492. PubMed ID: 38129786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Practical Guide to Integrating Multimodal Machine Learning and Metabolic Modeling.
    Vijayakumar S; Magazzù G; Moon P; Occhipinti A; Angione C
    Methods Mol Biol; 2022; 2399():87-122. PubMed ID: 35604554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.
    Wu SG; Wang Y; Jiang W; Oyetunde T; Yao R; Zhang X; Shimizu K; Tang YJ; Bao FS
    PLoS Comput Biol; 2016 Apr; 12(4):e1004838. PubMed ID: 27092947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal regularized linear models with flux balance analysis for mechanistic integration of omics data.
    Magazzù G; Zampieri G; Angione C
    Bioinformatics; 2021 Oct; 37(20):3546-3552. PubMed ID: 33974036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for hybrid flux balance, statistical, and machine learning analysis of multi-omic data from the cyanobacterium
    Vijayakumar S; Angione C
    STAR Protoc; 2021 Dec; 2(4):100837. PubMed ID: 34632416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Framework for Machine-Learning-Enabled
    Wu C; Yu J; Guarnieri M; Xiong W
    ACS Synth Biol; 2022 Jan; 11(1):103-115. PubMed ID: 34705423
    [No Abstract]   [Full Text] [Related]  

  • 10. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.
    Zhang J; Petersen SD; Radivojevic T; Ramirez A; Pérez-Manríquez A; Abeliuk E; Sánchez BJ; Costello Z; Chen Y; Fero MJ; Martin HG; Nielsen J; Keasling JD; Jensen MK
    Nat Commun; 2020 Sep; 11(1):4880. PubMed ID: 32978375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate flux predictions using tissue-specific gene expression in plant metabolic modeling.
    Kaste JAM; Shachar-Hill Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37040081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine and deep learning meet genome-scale metabolic modeling.
    Zampieri G; Vijayakumar S; Yaneske E; Angione C
    PLoS Comput Biol; 2019 Jul; 15(7):e1007084. PubMed ID: 31295267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Big data in yeast systems biology.
    Yu R; Nielsen J
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31603503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function.
    Zhang SW; Gou WL; Li Y
    Mol Biosyst; 2017 May; 13(5):901-909. PubMed ID: 28338129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning and Hybrid Methods for Metabolic Pathway Modeling.
    Cuperlovic-Culf M; Nguyen-Tran T; Bennett SAL
    Methods Mol Biol; 2023; 2553():417-439. PubMed ID: 36227553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Flux Balance Analysis and Machine Learning Pipeline Elucidates Metabolic Adaptation in Cyanobacteria.
    Vijayakumar S; Rahman PKSM; Angione C
    iScience; 2020 Dec; 23(12):101818. PubMed ID: 33354660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.
    Kim MK; Lane A; Kelley JJ; Lun DS
    PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma.
    Singh NP; Bapi RS; Vinod PK
    Comput Biol Med; 2018 Sep; 100():92-99. PubMed ID: 29990647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems Biology and Machine Learning in Plant-Pathogen Interactions.
    Mishra B; Kumar N; Mukhtar MS
    Mol Plant Microbe Interact; 2019 Jan; 32(1):45-55. PubMed ID: 30418085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.