BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 32675233)

  • 21. Automated analysis of high-content microscopy data with deep learning.
    Kraus OZ; Grys BT; Ba J; Chong Y; Frey BJ; Boone C; Andrews BJ
    Mol Syst Biol; 2017 Apr; 13(4):924. PubMed ID: 28420678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast.
    Blank LM; Kuepfer L; Sauer U
    Genome Biol; 2005; 6(6):R49. PubMed ID: 15960801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on Tutorial, and Perspectives.
    Vijayakumar S; Conway M; Lió P; Angione C
    Methods Mol Biol; 2018; 1716():389-408. PubMed ID: 29222764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human Systems Biology and Metabolic Modelling: A Review-From Disease Metabolism to Precision Medicine.
    Angione C
    Biomed Res Int; 2019; 2019():8304260. PubMed ID: 31281846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks.
    Millard P; Schmitt U; Kiefer P; Vorholt JA; Heux S; Portais JC
    PLoS Comput Biol; 2020 Apr; 16(4):e1007799. PubMed ID: 32287281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction.
    Heavner BD; Price ND
    PLoS Comput Biol; 2015 Nov; 11(11):e1004530. PubMed ID: 26566239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network.
    Heavner BD; Smallbone K; Barker B; Mendes P; Walker LP
    BMC Syst Biol; 2012 Jun; 6():55. PubMed ID: 22663945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pan-genome of Saccharomyces cerevisiae.
    Li G; Ji B; Nielsen J
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31584649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype-phenotype prediction.
    Chandrashekar PB; Alatkar S; Wang J; Hoffman GE; He C; Jin T; Khullar S; Bendl J; Fullard JF; Roussos P; Wang D
    Genome Med; 2023 Oct; 15(1):88. PubMed ID: 37904203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on machine learning principles for multi-view biological data integration.
    Li Y; Wu FX; Ngom A
    Brief Bioinform; 2018 Mar; 19(2):325-340. PubMed ID: 28011753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning enables identification of an alternative yeast galactose utilization pathway.
    Harrison MC; Ubbelohde EJ; LaBella AL; Opulente DA; Wolters JF; Zhou X; Shen XX; Groenewald M; Hittinger CT; Rokas A
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2315314121. PubMed ID: 38669185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.
    Nandi S; Subramanian A; Sarkar RR
    Mol Biosyst; 2017 Jul; 13(8):1584-1596. PubMed ID: 28671706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Method to Constrain Genome-Scale Models with 13C Labeling Data.
    Martín HG; Kumar VS; Weaver D; Ghosh A; Chubukov V; Mukhopadhyay A; Arkin A; Keasling JD
    PLoS Comput Biol; 2015 Sep; 11(9):e1004363. PubMed ID: 26379153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systems Metabolic Engineering Meets Machine Learning: A New Era for Data-Driven Metabolic Engineering.
    Presnell KV; Alper HS
    Biotechnol J; 2019 Sep; 14(9):e1800416. PubMed ID: 30927499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bridging the gap between gene expression and metabolic phenotype via kinetic models.
    Vital-Lopez FG; Wallqvist A; Reifman J
    BMC Syst Biol; 2013 Jul; 7():63. PubMed ID: 23875723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved prediction of gene expression through integrating cell signalling models with machine learning.
    Al Taweraqi N; King RD
    BMC Bioinformatics; 2022 Aug; 23(1):323. PubMed ID: 35933367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporating Machine Learning into Established Bioinformatics Frameworks.
    Auslander N; Gussow AB; Koonin EV
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.