BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32675836)

  • 1. The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations.
    Liu J; Yang W; Dong M; Marsden AL
    Comput Methods Appl Mech Eng; 2020 Aug; 367():. PubMed ID: 32675836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust and efficient iterative method for hyper-elastodynamics with nested block preconditioning.
    Liu J; Marsden AL
    J Comput Phys; 2019 Apr; 383():72-93. PubMed ID: 31595091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aneurysm-specific preconditioning technique for the acceleration of Newton-Krylov method with application in the simulation of blood flows.
    Liu Y; Qi F; Cai XC
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3771. PubMed ID: 37688432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational principle for the Navier-Stokes equations.
    Kerswell RR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5482-94. PubMed ID: 11969527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Variational Multiscale method with immersed boundary conditions for incompressible flows.
    Kang S; Masud A
    Meccanica; 2021 Jun; 56(6):1397-1422. PubMed ID: 37655308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
    Liu J; Marsden AL
    Comput Methods Appl Mech Eng; 2018 Aug; 337():549-597. PubMed ID: 30505038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newton-Raphson preconditioner for Krylov type solvers on GPU devices.
    Kushida N
    Springerplus; 2016; 5(1):788. PubMed ID: 27386273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels.
    Seo J; Schiavazzi DE; Marsden AL
    Comput Mech; 2019 Sep; 64():717-739. PubMed ID: 31827310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.
    Tan NB; Huang TZ; Hu ZJ
    ScientificWorldJournal; 2013; 2013():486323. PubMed ID: 24235888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
    Mang A; Biros G
    SIAM J Sci Comput; 2017; 39(6):B1064-B1101. PubMed ID: 29255342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparisons of Some Iterative Algorithms for Biot Equations.
    Cai M; Zhang G
    Int J Evol Equ; 2015; 10(3-4):267-282. PubMed ID: 30364836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An energy-stable mixed formulation for isogeometric analysis of incompressible hyper-elastodynamics.
    Liu J; Marsden AL; Tao Z
    Int J Numer Methods Eng; 2019 Nov; 120(8):937-963. PubMed ID: 32981972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DOMAIN DECOMPOSITION PRECONDITIONING FOR AN INVERSE VOLUME SCATTERING PROBLEM.
    Borges C; Biros G
    Inverse Probl; 2020 Mar; 36(3):. PubMed ID: 33746329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.