These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32676445)

  • 21. Relative stability of network states in Boolean network models of gene regulation in development.
    Zhou JX; Samal A; d'Hérouël AF; Price ND; Huang S
    Biosystems; 2016; 142-143():15-24. PubMed ID: 26965665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robustness and state-space structure of Boolean gene regulatory models.
    Willadsen K; Wiles J
    J Theor Biol; 2007 Dec; 249(4):749-65. PubMed ID: 17936309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition.
    Yang L; Meng Y; Bao C; Liu W; Ma C; Li A; Xuan Z; Shan G; Jia Y
    PLoS One; 2013; 8(3):e57009. PubMed ID: 23469179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae.
    Haliki E; Alpagut Keskin N; Masalci O
    J Biol Phys; 2019 Sep; 45(3):235-251. PubMed ID: 31175490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deconstruction and dynamical robustness of regulatory networks: application to the yeast cell cycle networks.
    Goles E; Montalva M; Ruz GA
    Bull Math Biol; 2013 Jun; 75(6):939-66. PubMed ID: 23188157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network.
    Ruz GA; Timmermann T; Barrera J; Goles E
    Biol Res; 2014 Nov; 47(1):64. PubMed ID: 25723815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boolean network model predicts cell cycle sequence of fission yeast.
    Davidich MI; Bornholdt S
    PLoS One; 2008 Feb; 3(2):e1672. PubMed ID: 18301750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell size at S phase initiation: an emergent property of the G1/S network.
    Barberis M; Klipp E; Vanoni M; Alberghina L
    PLoS Comput Biol; 2007 Apr; 3(4):e64. PubMed ID: 17432928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2.
    Oguz C; Palmisano A; Laomettachit T; Watson LT; Baumann WT; Tyson JJ
    PLoS One; 2014; 9(5):e96726. PubMed ID: 24816736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The yeast cell-cycle network is robustly designed.
    Li F; Long T; Lu Y; Ouyang Q; Tang C
    Proc Natl Acad Sci U S A; 2004 Apr; 101(14):4781-6. PubMed ID: 15037758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning restricted Boolean network model by time-series data.
    Ouyang H; Fang J; Shen L; Dougherty ER; Liu W
    EURASIP J Bioinform Syst Biol; 2014; 2014(1):10. PubMed ID: 25093019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generalized Markov stability of network communities.
    Patelli A; Gabrielli A; Cimini G
    Phys Rev E; 2020 May; 101(5-1):052301. PubMed ID: 32575290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental testing of a new integrated model of the budding yeast Start transition.
    Adames NR; Schuck PL; Chen KC; Murali TM; Tyson JJ; Peccoud J
    Mol Biol Cell; 2015 Nov; 26(22):3966-84. PubMed ID: 26310445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying robustness and dissipation cost of yeast cell cycle network: the funneled energy landscape perspectives.
    Han B; Wang J
    Biophys J; 2007 Jun; 92(11):3755-63. PubMed ID: 17350995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting network modules of cell cycle regulators using relative protein abundance statistics.
    Oguz C; Watson LT; Baumann WT; Tyson JJ
    BMC Syst Biol; 2017 Feb; 11(1):30. PubMed ID: 28241833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An agent-based model of the fission yeast cell cycle.
    Castro C; Flores DL; Cervantes-Vásquez D; Vargas-Viveros E; Gutiérrez-López E; Muñoz-Muñoz F
    Curr Genet; 2019 Feb; 65(1):193-200. PubMed ID: 29916047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution and enumeration of attractors in probabilistic Boolean networks.
    Hayashida M; Tamura T; Akutsu T; Ching WK; Cong Y
    IET Syst Biol; 2009 Nov; 3(6):465-74. PubMed ID: 19947772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space.
    Berntenis N; Ebeling M
    BMC Bioinformatics; 2013 Dec; 14():361. PubMed ID: 24330355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the long-run sensitivity of probabilistic Boolean networks.
    Qian X; Dougherty ER
    J Theor Biol; 2009 Apr; 257(4):560-77. PubMed ID: 19168076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchronization of the Budding Yeast Saccharomyces cerevisiae.
    Foltman M; Molist I; Sanchez-Diaz A
    Methods Mol Biol; 2016; 1369():279-91. PubMed ID: 26519319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.