These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. D614G Substitution of SARS-CoV-2 Spike Protein Increases Syncytium Formation and Virus Titer via Enhanced Furin-Mediated Spike Cleavage. Cheng YW; Chao TL; Li CL; Wang SH; Kao HC; Tsai YM; Wang HY; Hsieh CL; Lin YY; Chen PJ; Chang SY; Yeh SH mBio; 2021 Aug; 12(4):e0058721. PubMed ID: 34311586 [TBL] [Abstract][Full Text] [Related]
24. Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Based Novel Epitopes Induce Potent Immune Responses Vishwakarma P; Yadav N; Rizvi ZA; Khan NA; Chiranjivi AK; Mani S; Bansal M; Dwivedi P; Shrivastava T; Kumar R; Awasthi A; Ahmed S; Samal S Front Immunol; 2021; 12():613045. PubMed ID: 33841395 [TBL] [Abstract][Full Text] [Related]
25. Static All-Atom Energetic Mappings of the SARS-Cov-2 Spike Protein with Potential Latch Identification of the Down State Protomer. Peters MH; Bastidas O; Kokron DS; Henze C bioRxiv; 2020 Jun; ():. PubMed ID: 32511362 [TBL] [Abstract][Full Text] [Related]
26. The effect of Huang C; Tan Z; Zhao K; Zou W; Wang H; Gao H; Sun S; Bu D; Chai W; Li Y iScience; 2021 Nov; 24(11):103272. PubMed ID: 34661088 [TBL] [Abstract][Full Text] [Related]
27. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
28. Exploring Spike Protein as Potential Target of Novel Coronavirus and to Inhibit the Viability Utilizing Natural Agents. Nandi S; Roy H; Gummadi A; Saxena AK Curr Drug Targets; 2021; 22(17):2006-2020. PubMed ID: 33687893 [TBL] [Abstract][Full Text] [Related]
29. Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. Pillay TS J Clin Pathol; 2020 Jul; 73(7):366-369. PubMed ID: 32376714 [TBL] [Abstract][Full Text] [Related]
30. Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V. Bollavaram K; Leeman TH; Lee MW; Kulkarni A; Upshaw SG; Yang J; Song H; Platt MO Protein Sci; 2021 Jun; 30(6):1131-1143. PubMed ID: 33786919 [TBL] [Abstract][Full Text] [Related]
31. Role of Q675H Mutation in Improving SARS-CoV-2 Spike Interaction with the Furin Binding Pocket. Bertelli A; D'Ursi P; Campisi G; Messali S; Milanesi M; Giovanetti M; Ciccozzi M; Caccuri F; Caruso A Viruses; 2021 Dec; 13(12):. PubMed ID: 34960779 [TBL] [Abstract][Full Text] [Related]
32. The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses. Ramírez Hernández E; Hernández-Zimbrón LF; Martínez Zúñiga N; Leal-García JJ; Ignacio Hernández V; Ucharima-Corona LE; Pérez Campos E; Zenteno E Viral Immunol; 2021 Apr; 34(3):165-173. PubMed ID: 33605822 [TBL] [Abstract][Full Text] [Related]
33. Structural- and Site-Specific Zhu B; Chen Z; Shen J; Xu Y; Lan R; Sun S Anal Chem; 2022 Sep; 94(36):12274-12279. PubMed ID: 36036581 [TBL] [Abstract][Full Text] [Related]
34. Production and secretion of functional SARS-CoV-2 spike protein in Kiefer AM; Niemeyer J; Probst A; Erkel G; Schroda M Front Plant Sci; 2022; 13():988870. PubMed ID: 36204065 [TBL] [Abstract][Full Text] [Related]
35. Is diabetes a real susceptibility for SARS-CoV-2 oral manifestation? Smitha T; Thomas A J Oral Maxillofac Pathol; 2023; 27(4):715-719. PubMed ID: 38304492 [TBL] [Abstract][Full Text] [Related]
36. SARS-CoV-2 Glycosylation Suggests That Vaccines Should Have Adopted the S1 Subunit as Antigen. Fernández A ACS Pharmacol Transl Sci; 2021 Apr; 4(2):1016-1017. PubMed ID: 33860218 [TBL] [Abstract][Full Text] [Related]
37. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Zhao P; Praissman JL; Grant OC; Cai Y; Xiao T; Rosenbalm KE; Aoki K; Kellman BP; Bridger R; Barouch DH; Brindley MA; Lewis NE; Tiemeyer M; Chen B; Woods RJ; Wells L Cell Host Microbe; 2020 Oct; 28(4):586-601.e6. PubMed ID: 32841605 [TBL] [Abstract][Full Text] [Related]
38. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Benton DJ; Wrobel AG; Xu P; Roustan C; Martin SR; Rosenthal PB; Skehel JJ; Gamblin SJ Nature; 2020 Dec; 588(7837):327-330. PubMed ID: 32942285 [TBL] [Abstract][Full Text] [Related]
39. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Ke Z; Oton J; Qu K; Cortese M; Zila V; McKeane L; Nakane T; Zivanov J; Neufeldt CJ; Cerikan B; Lu JM; Peukes J; Xiong X; Kräusslich HG; Scheres SHW; Bartenschlager R; Briggs JAG Nature; 2020 Dec; 588(7838):498-502. PubMed ID: 32805734 [TBL] [Abstract][Full Text] [Related]
40. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Li Q; Wu J; Nie J; Zhang L; Hao H; Liu S; Zhao C; Zhang Q; Liu H; Nie L; Qin H; Wang M; Lu Q; Li X; Sun Q; Liu J; Zhang L; Li X; Huang W; Wang Y Cell; 2020 Sep; 182(5):1284-1294.e9. PubMed ID: 32730807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]