These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1075 related articles for article (PubMed ID: 32676784)
1. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features. Bernatz S; Ackermann J; Mandel P; Kaltenbach B; Zhdanovich Y; Harter PN; Döring C; Hammerstingl R; Bodelle B; Smith K; Bucher A; Albrecht M; Rosbach N; Basten L; Yel I; Wenzel M; Bankov K; Koch I; Chun FK; Köllermann J; Wild PJ; Vogl TJ Eur Radiol; 2020 Dec; 30(12):6757-6769. PubMed ID: 32676784 [TBL] [Abstract][Full Text] [Related]
2. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Bleker J; Kwee TC; Dierckx RAJO; de Jong IJ; Huisman H; Yakar D Eur Radiol; 2020 Mar; 30(3):1313-1324. PubMed ID: 31776744 [TBL] [Abstract][Full Text] [Related]
3. Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models. Marvaso G; Isaksson LJ; Zaffaroni M; Vincini MG; Summers PE; Pepa M; Corrao G; Mazzola GC; Rotondi M; Mastroleo F; Raimondi S; Alessi S; Pricolo P; Luzzago S; Mistretta FA; Ferro M; Cattani F; Ceci F; Musi G; De Cobelli O; Cremonesi M; Gandini S; La Torre D; Orecchia R; Petralia G; Jereczek-Fossa BA Eur Radiol; 2024 Oct; 34(10):6241-6253. PubMed ID: 38507053 [TBL] [Abstract][Full Text] [Related]
4. Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions. Hectors SJ; Chen C; Chen J; Wang J; Gordon S; Yu M; Al Hussein Al Awamlh B; Sabuncu MR; Margolis DJA; Hu JC J Magn Reson Imaging; 2021 Nov; 54(5):1466-1473. PubMed ID: 33970516 [TBL] [Abstract][Full Text] [Related]
5. Clinico-radiological characteristic-based machine learning in reducing unnecessary prostate biopsies of PI-RADS 3 lesions with dual validation. Kan Y; Zhang Q; Hao J; Wang W; Zhuang J; Gao J; Huang H; Liang J; Marra G; Calleris G; Oderda M; Zhao X; Gontero P; Guo H Eur Radiol; 2020 Nov; 30(11):6274-6284. PubMed ID: 32524222 [TBL] [Abstract][Full Text] [Related]
6. Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Wildeboer RR; Mannaerts CK; van Sloun RJG; Budäus L; Tilki D; Wijkstra H; Salomon G; Mischi M Eur Radiol; 2020 Feb; 30(2):806-815. PubMed ID: 31602512 [TBL] [Abstract][Full Text] [Related]
7. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
8. Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values. Bonekamp D; Kohl S; Wiesenfarth M; Schelb P; Radtke JP; Götz M; Kickingereder P; Yaqubi K; Hitthaler B; Gählert N; Kuder TA; Deister F; Freitag M; Hohenfellner M; Hadaschik BA; Schlemmer HP; Maier-Hein KH Radiology; 2018 Oct; 289(1):128-137. PubMed ID: 30063191 [TBL] [Abstract][Full Text] [Related]
9. Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions. Nai YH; Cheong DLH; Roy S; Kok T; Stephenson MC; Schaefferkoetter J; Totman JJ; Conti M; Eriksson L; Robins EG; Wang Z; Chua WY; Ang BWL; Singha AK; Thamboo TP; Chiong E; Reilhac A Magn Reson Imaging; 2023 Jul; 100():64-72. PubMed ID: 36933775 [TBL] [Abstract][Full Text] [Related]
10. Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High-Grade Prostate Cancer at Radical Prostatectomy: Comparison With Preoperative Biopsy. Han C; Ma S; Liu X; Liu Y; Li C; Zhang Y; Zhang X; Wang X J Magn Reson Imaging; 2021 Dec; 54(6):1892-1901. PubMed ID: 33682286 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions. Brancato V; Aiello M; Basso L; Monti S; Palumbo L; Di Costanzo G; Salvatore M; Ragozzino A; Cavaliere C Sci Rep; 2021 Jan; 11(1):643. PubMed ID: 33436929 [TBL] [Abstract][Full Text] [Related]
12. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2. Chen T; Li M; Gu Y; Zhang Y; Yang S; Wei C; Wu J; Li X; Zhao W; Shen J J Magn Reson Imaging; 2019 Mar; 49(3):875-884. PubMed ID: 30230108 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Wang J; Wu CJ; Bao ML; Zhang J; Wang XN; Zhang YD Eur Radiol; 2017 Oct; 27(10):4082-4090. PubMed ID: 28374077 [TBL] [Abstract][Full Text] [Related]
14. Utility of machine learning of apparent diffusion coefficient (ADC) and T2-weighted (T2W) radiomic features in PI-RADS version 2.1 category 3 lesions to predict prostate cancer diagnosis. Lim CS; Abreu-Gomez J; Thornhill R; James N; Al Kindi A; Lim AS; Schieda N Abdom Radiol (NY); 2021 Dec; 46(12):5647-5658. PubMed ID: 34467426 [TBL] [Abstract][Full Text] [Related]
15. Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists. Antonelli M; Johnston EW; Dikaios N; Cheung KK; Sidhu HS; Appayya MB; Giganti F; Simmons LAM; Freeman A; Allen C; Ahmed HU; Atkinson D; Ourselin S; Punwani S Eur Radiol; 2019 Sep; 29(9):4754-4764. PubMed ID: 31187216 [TBL] [Abstract][Full Text] [Related]
16. Voxel-based supervised machine learning of peripheral zone prostate cancer using noncontrast multiparametric MRI. Gholizadeh N; Simpson J; Ramadan S; Denham J; Lau P; Siddique S; Dowling J; Welsh J; Chalup S; Greer PB J Appl Clin Med Phys; 2020 Oct; 21(10):179-191. PubMed ID: 32770600 [TBL] [Abstract][Full Text] [Related]
18. The performance of intravoxel-incoherent motion diffusion-weighted imaging derived hypoxia for the risk stratification of prostate cancer in peripheral zone. Chen Z; Xue Y; Zhang Z; Li W; Wen M; Zhao Y; Li J; Weng Z; Ye Q Eur J Radiol; 2020 Apr; 125():108865. PubMed ID: 32058895 [TBL] [Abstract][Full Text] [Related]
19. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis. Wu M; Krishna S; Thornhill RE; Flood TA; McInnes MDF; Schieda N J Magn Reson Imaging; 2019 Sep; 50(3):940-950. PubMed ID: 30701625 [TBL] [Abstract][Full Text] [Related]
20. Prospective Inclusion of Apparent Diffusion Coefficients in Multiparametric Prostate MRI Structured Reports: Discrimination of Clinically Insignificant and Significant Cancers. Costa DN; Xi Y; Aziz M; Passoni N; Shakir N; Goldberg K; Francis F; Roehrborn CG; Leon AD; Pedrosa I AJR Am J Roentgenol; 2019 Jan; 212(1):109-116. PubMed ID: 30383404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]