BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 32676852)

  • 1. The dynamic transcriptome of waxy maize (Zea mays L. sinensis Kulesh) during seed development.
    Gu W; Yu D; Guan Y; Wang H; Qin T; Sun P; Hu Y; Wei J; Zheng H
    Genes Genomics; 2020 Sep; 42(9):997-1010. PubMed ID: 32676852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development.
    Xiong W; Wang C; Zhang X; Yang Q; Shao R; Lai J; Du C
    Plant J; 2017 Dec; 92(6):1143-1156. PubMed ID: 29072883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of amylose accumulation during seed development in maize.
    Guo SJ; Li JR; Qiao WH; Zhang XS
    Yi Chuan Xue Bao; 2006 Nov; 33(11):1014-9. PubMed ID: 17112973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Mechanisms Underlying Increase in Lysine Content of Waxy Maize through the Introgression of the
    Wang W; Niu S; Dai Y; Zhai X; Wang M; Ding Y; Yang W; Zhao D
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30764507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development.
    Yi F; Gu W; Chen J; Song N; Gao X; Zhang X; Zhou Y; Ma X; Song W; Zhao H; Esteban E; Pasha A; Provart NJ; Lai J
    Plant Cell; 2019 May; 31(5):974-992. PubMed ID: 30914497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic diversity and molecular evolution of Chinese waxy maize germplasm.
    Zheng H; Wang H; Yang H; Wu J; Shi B; Cai R; Xu Y; Wu A; Luo L
    PLoS One; 2013; 8(6):e66606. PubMed ID: 23818949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular diversity and differential expression of starch-synthesis genes in developing kernels of three maize inbreds.
    Ding XZ; Wang BG; Gao QH; Zhang Q; Yan GQ; Duan K; Huang JH
    Plant Cell Rep; 2009 Oct; 28(10):1487-95. PubMed ID: 19633858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Profiling of Maize (
    Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.).
    Han Z; Wang B; Tian L; Wang S; Zhang J; Guo S; Zhang H; Xu L; Chen Y
    Physiol Plant; 2020 Jan; 168(1):205-217. PubMed ID: 30767243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage.
    Hwang SG; Kim KH; Lee BM; Moon JC
    Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome and co-expression network analyses of key genes and pathways associated with differential abscisic acid accumulation during maize seed maturation.
    Niu L; Du C; Wang W; Zhang M; Wang W; Liu H; Zhang J; Wu X
    BMC Plant Biol; 2022 Jul; 22(1):359. PubMed ID: 35869440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Zea mays mutants opaque2 and opaque16 disclose lysine change in waxy maize as revealed by RNA-Seq.
    Wang W; Niu S; Dai Y; Wang M; Li Y; Yang W; Zhao D
    Sci Rep; 2019 Aug; 9(1):12265. PubMed ID: 31439855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice.
    Russell DA; Fromm ME
    Transgenic Res; 1997 Mar; 6(2):157-68. PubMed ID: 9090063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An expression analysis of 57 transcription factors derived from ESTs of developing seeds in Maize (Zea mays).
    Wang G; Wang H; Zhu J; Zhang J; Zhang X; Wang F; Tang Y; Mei B; Xu Z; Song R
    Plant Cell Rep; 2010 Jun; 29(6):545-59. PubMed ID: 20336461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress.
    Guo J; Wang Z; Qu L; Hu Y; Lu D
    BMC Plant Biol; 2022 Sep; 22(1):432. PubMed ID: 36076169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel.
    He J; Wang J; Zhang Z
    Plant J; 2024 Jun; 118(6):2124-2140. PubMed ID: 38551088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.
    Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y
    PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imprinted gene expression in maize starchy endosperm and aleurone tissues of reciprocal F1 hybrids at a defined developmental stage.
    Zhang M; Lv R; Yang W; Fu T; Liu B
    Genes Genomics; 2018 Jan; 40(1):99-107. PubMed ID: 29892900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.