These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32676970)

  • 1. Supervised Multidimensional Scaling and its Application in MRI-Based Individual Age Predictions.
    Cao X; Chen C; Tian L
    Neuroinformatics; 2021 Apr; 19(2):219-231. PubMed ID: 32676970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data.
    Viswanath S; Madabhushi A
    BMC Bioinformatics; 2012 Feb; 13():26. PubMed ID: 22316103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.
    Cui Z; Gong G
    Neuroimage; 2018 Sep; 178():622-637. PubMed ID: 29870817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manifold Learning by Preserving Distance Orders.
    Ataer-Cansizoglu E; Akcakaya M; Orhan U; Erdogmus D
    Pattern Recognit Lett; 2014 Mar; 38():120-131. PubMed ID: 25045195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-slice Alzheimer's disease classification and disease regional analysis with Supervised Switching Autoencoders.
    Mendoza-Léon R; Puentes J; Uriza LF; Hernández Hoyos M
    Comput Biol Med; 2020 Jan; 116():103527. PubMed ID: 31765915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the efficacy of nonlinear dimensionality reduction schemes in classifying gene and protein expression studies.
    Lee G; Rodriguez C; Madabhushi A
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):368-84. PubMed ID: 18670041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases.
    Viswanath SE; Tiwari P; Lee G; Madabhushi A;
    BMC Med Imaging; 2017 Jan; 17(1):2. PubMed ID: 28056889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graph-based lesion characterization and deep embedding approach for improved computer-aided diagnosis of nonmass breast MRI lesions.
    Gallego-Ortiz C; Martel AL
    Med Image Anal; 2019 Jan; 51():116-124. PubMed ID: 30412826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of embedded fMRI resting-state functional connectivity networks using manifold learning.
    Gallos IK; Galaris E; Siettos CI
    Cogn Neurodyn; 2021 Aug; 15(4):585-608. PubMed ID: 34367362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supervised nonlinear dimension reduction of functional magnetic resonance imaging data using Sliced Inverse Regression.
    Yiheng Tu ; Ao Tan ; Zening Fu ; Yeung Sam Hung ; Li Hu ; Zhiguo Zhang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2641-4. PubMed ID: 26736834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust dimensionality reduction via feature space to feature space distance metric learning.
    Li B; Fan ZT; Zhang XL; Huang DS
    Neural Netw; 2019 Apr; 112():1-14. PubMed ID: 30716617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Feature Extraction for Resting-State Functional MRI by Self-Supervised Learning and Application to Schizophrenia Diagnosis.
    Hashimoto Y; Ogata Y; Honda M; Yamashita Y
    Front Neurosci; 2021; 15():696853. PubMed ID: 34512240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised latent linear Gaussian process latent variable model for dimensionality reduction.
    Jiang X; Gao J; Wang T; Zheng L
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1620-32. PubMed ID: 22623433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central subspace dimensionality reduction using covariance operators.
    Kim M; Pavlovic V
    IEEE Trans Pattern Anal Mach Intell; 2011 Apr; 33(4):657-70. PubMed ID: 20513923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications.
    Zhang J; Zhang C; Yao L; Zhao X; Long Z
    Comput Intell Neurosci; 2018; 2018():3956536. PubMed ID: 29849545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D scattering transforms for disease classification in neuroimaging.
    Adel T; Cohen T; Caan M; Welling M;
    Neuroimage Clin; 2017; 14():506-517. PubMed ID: 28289601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature importance-based interpretation of UMAP-visualized polymer space.
    Ehiro T
    Mol Inform; 2023 Aug; 42(8-9):e2300061. PubMed ID: 37212494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal self-supervised learning.
    Zhao Q; Liu Z; Adeli E; Pohl KM
    Med Image Anal; 2021 Jul; 71():102051. PubMed ID: 33882336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures.
    Cao P; Liu X; Yang J; Zhao D; Huang M; Zhang J; Zaiane O
    Comput Biol Med; 2017 Dec; 91():21-37. PubMed ID: 29031664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.