BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32677015)

  • 1. Removal of antipyrine through two-dimensional and three-dimensional electrolysis: comparison, modification, and improvement.
    Liu P; Wang X; Lu J; Li Y; Hou B; Feng L
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40837-40847. PubMed ID: 32677015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical degradation of oxytetracycline by Ti-Sn-Sb/γ-Al
    Sun W; Sun Y; Shah KJ; Zheng H; Ma B
    J Environ Manage; 2019 Jul; 241():22-31. PubMed ID: 30981140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical treatment of 2, 4-dichlorophenol using a nanostructured 3D-porous Ti/Sb-SnO
    Asim S; Zhu Y; Batool A; Hailili R; Luo J; Wang Y; Wang C
    Chemosphere; 2017 Oct; 185():11-19. PubMed ID: 28683332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO
    Xing X; Ni J; Zhu X; Jiang Y; Xia J
    Chemosphere; 2018 Aug; 205():361-368. PubMed ID: 29704843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Electrochemical Removal Mechanism of Oxytetracycline by a Ti/IrO
    Zhang Y; Jiang W; Dong H; Hu X; Fang B; Gao G; Zhao R
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33578856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic oxidation of tetracycline by Bi-Sn-Sb/γ-Al
    Sun W; Sun Y; Shah KJ; Chiang PC; Zheng H
    J Hazard Mater; 2019 May; 370():24-32. PubMed ID: 30322812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO
    Samarghandi MR; Dargahi A; Rahmani A; Shabanloo A; Ansari A; Nematollahi D
    Chemosphere; 2021 Sep; 279():130640. PubMed ID: 34134425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high activity of Ti/SnO2-Sb electrode in the electrochemical degradation of 2,4-dichlorophenol in aqueous solution.
    Niu J; Maharana D; Xu J; Chai Z; Bao Y
    J Environ Sci (China); 2013 Jul; 25(7):1424-30. PubMed ID: 24218856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-voltage pulse electrolysis method for the degradation of anthraquinone and azo dyes in chloride medium by anodic oxidation on Ti/IrO
    Chao HJ; Xue D; Jiang W; Li D; Hu Z; Kang J; Liu D
    Water Environ Res; 2020 May; 92(5):779-788. PubMed ID: 31697421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of graphite electrode on the removal of anticancer drug cytarabine via indirect electrochemical oxidation process: Kinetics & pathway study.
    Sivodia C; Sinha A
    Chemosphere; 2020 Mar; 243():125456. PubMed ID: 31995895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical degradation of indigo carmine, P-nitrosodimethylaniline and clothianidin on a fabricated Ti/SnO
    Nguyen Tien H; Bui DN; Manh TD; Tram NT; Ngo VD; Mwazighe FM; Hoang HY; Le VT
    Chemosphere; 2023 Feb; 313():137352. PubMed ID: 36436577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and comparison of Ti/TiO
    Moura de Salles Pupo M; Albahaca Oliva JM; Barrios Eguiluz KI; Salazar-Banda GR; Radjenovic J
    Chemosphere; 2020 Aug; 253():126701. PubMed ID: 32302902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic oxidation of ciprofloxacin by Co-Ce-Zr/γ-Al
    Liu Y; Ma Y; Wan J; Wang Y; Sun J; Xue Y
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43815-43830. PubMed ID: 33840030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of novel three-dimensional Fe
    Zhou T; Huang X; Zhai T; Ma K; Zhang H; Zhang G
    Chemosphere; 2022 Jan; 287(Pt 4):132397. PubMed ID: 34597640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes.
    Pourzamani H; Mengelizadeh N; Hajizadeh Y; Mohammadi H
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24746-24763. PubMed ID: 29923052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced mass transfer and service time of mesh Ti/Sb-SnO
    Huang L; Li D; Liu J; Yang L; Dai C; Ren N; Feng Y
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):42072-42081. PubMed ID: 32705558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9-C10) by Ti/SnO2-Sb-Ce, Ti/SnO2-Sb/Ce-PbO2, and Ti/BDD electrodes.
    Lin H; Niu J; Xu J; Huang H; Li D; Yue Z; Feng C
    Environ Sci Technol; 2013 Nov; 47(22):13039-46. PubMed ID: 24164589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalysis degradation of tetracycline in a three-dimensional aeration electrocatalysis reactor (3D-AER) with a flotation-tailings particle electrode (FPE): Physicochemical properties, influencing factors and the degradation mechanism.
    Yang S; Feng Y; Gao D; Wang X; Suo N; Yu Y; Zhang S
    J Hazard Mater; 2021 Apr; 407():124361. PubMed ID: 33246816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical degradation of chloramphenicol using Ti-based SnO
    Li D; Zhang L; Gao W; Meng J; Guan Y; Liang J; Shen X
    Water Sci Technol; 2021 Aug; 84(3):512-523. PubMed ID: 34388116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel electro-catalytic degradation method of phenol wastewater with Ti/IrO
    Gao J; Yan J; Liu Y; Zhang J; Guo Z
    Water Sci Technol; 2017 Jul; 76(3-4):662-670. PubMed ID: 28759448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.