These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 32677314)
1. Microneedle-based transdermal electrochemical biosensors based on Prussian blue-gold nanohybrid modified screen-printed electrodes. Pandey PC; Pandey G; Narayan RJ J Biomed Mater Res B Appl Biomater; 2021 Jan; 109(1):33-49. PubMed ID: 32677314 [TBL] [Abstract][Full Text] [Related]
2. Polyethylenimine-mediated controlled synthesis of Prussian blue-gold nanohybrids for biomedical applications. Pandey P; Pandey G; Narayan R J Biomater Appl; 2021 Jul; 36(1):26-35. PubMed ID: 33297833 [TBL] [Abstract][Full Text] [Related]
3. Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles. Cinti S; Arduini F; Moscone D; Palleschi G; Killard AJ Sensors (Basel); 2014 Aug; 14(8):14222-34. PubMed ID: 25093348 [TBL] [Abstract][Full Text] [Related]
4. A highly sensitive flow injection amperometric glucose biosensor using a gold nanoparticles/polytyramine/Prussian blue modified screen-printed carbon electrode. Khumngern S; Jirakunakorn R; Thavarungkul P; Kanatharana P; Numnuam A Bioelectrochemistry; 2021 Apr; 138():107718. PubMed ID: 33333458 [TBL] [Abstract][Full Text] [Related]
5. An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Wang B; Ji X; Zhao H; Wang N; Li X; Ni R; Liu Y Biosens Bioelectron; 2014 May; 55():113-9. PubMed ID: 24368228 [TBL] [Abstract][Full Text] [Related]
6. Gold nanoparticles conjugated to bimetallic manganese(II) and iron(II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells. Zhou N; Su F; Li Z; Yan X; Zhang C; Hu B; He L; Wang M; Zhang Z Mikrochim Acta; 2019 Jan; 186(2):75. PubMed ID: 30627835 [TBL] [Abstract][Full Text] [Related]
7. Amperometric biogenic amine biosensors based on Prussian blue, indium tin oxide nanoparticles and diamine oxidase- or monoamine oxidase-modified electrodes. Kaçar C; Erden PE; Dalkiran B; İnal EK; Kiliç E Anal Bioanal Chem; 2020 Mar; 412(8):1933-1946. PubMed ID: 32076788 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric and Electrochemical Dual-Mode Detection of Thioredoxin 1 Based on the Efficient Peroxidase-Mimicking and Electrocatalytic Property of Prussian Blue Nanoparticles. Kim JU; Kim JM; Thamilselvan A; Nam KH; Kim MI Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667178 [TBL] [Abstract][Full Text] [Related]
9. Prussian blue-gold nanoparticles-ionic liquid functionalized reduced graphene oxide nanocomposite as label for ultrasensitive electrochemical immunoassay of alpha-fetoprotein. Gao Q; Liu N; Ma Z Anal Chim Acta; 2014 Jun; 829():15-21. PubMed ID: 24856397 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of gold coated magnetic microparticles and their application for electrochemical glucose sensing by the enzymatically precipitated prussian blue. Jung HY; Park JH; Hwang S; Kwak J J Biomed Nanotechnol; 2013 May; 9(5):901-6. PubMed ID: 23802422 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of Prussian Blue nanoparticles onto thiol SAM modified Au electrodes for electroanalytical or biosensor applications. Miao Y; Chen J; Wu X; Fang K; Jia A; Liu J J Nanosci Nanotechnol; 2007 Aug; 7(8):2877-82. PubMed ID: 17685310 [TBL] [Abstract][Full Text] [Related]
13. Development of an optical immunoassay based on peroxidase-mimicking Prussian blue nanoparticles and a label-free electrochemical immunosensor for accurate and sensitive quantification of milk species adulteration. Seddaoui N; Attaallah R; Amine A Mikrochim Acta; 2022 May; 189(5):209. PubMed ID: 35501410 [TBL] [Abstract][Full Text] [Related]
14. Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes. de Mattos IL; Gorton L; Ruzgas T Biosens Bioelectron; 2003 Mar; 18(2-3):193-200. PubMed ID: 12485765 [TBL] [Abstract][Full Text] [Related]
15. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Cui L; Hu J; Li CC; Wang CM; Zhang CY Biosens Bioelectron; 2018 Dec; 122():168-174. PubMed ID: 30265966 [TBL] [Abstract][Full Text] [Related]
16. Point-of-care testing device platform for the determination of creatinine on an enzyme@CS/PB/MXene@AuNP-based screen-printed carbon electrode. Li Y; Hang Y; Gopali R; Xu X; Chen G; Guan X; Bao N; Liu Y Mikrochim Acta; 2024 Aug; 191(9):534. PubMed ID: 39136796 [TBL] [Abstract][Full Text] [Related]
17. Prussian blue nanoparticle-labeled aptasensing platform on graphene oxide for voltammetric detection of α-fetoprotein in hepatocellular carcinoma with target recycling. Zhang B; Ding H; Chen Q; Wang T; Zhang K Analyst; 2019 Aug; 144(16):4858-4864. PubMed ID: 31294738 [TBL] [Abstract][Full Text] [Related]
18. An enzymatic histamine biosensor based on a screen-printed carbon electrode modified with a chitosan-gold nanoparticles composite cryogel on Prussian blue-coated multi-walled carbon nanotubes. Nontipichet N; Khumngern S; Choosang J; Thavarungkul P; Kanatharana P; Numnuam A Food Chem; 2021 Dec; 364():130396. PubMed ID: 34167007 [TBL] [Abstract][Full Text] [Related]
19. Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor. Cinti S; Cusenza R; Moscone D; Arduini F Talanta; 2018 Sep; 187():59-64. PubMed ID: 29853066 [TBL] [Abstract][Full Text] [Related]
20. Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo- and biosensing. Wang T; Fu Y; Chai L; Chao L; Bu L; Meng Y; Chen C; Ma M; Xie Q; Yao S Chemistry; 2014 Feb; 20(9):2623-30. PubMed ID: 24482045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]