These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32677635)

  • 21. Direct Conversion of Carboxylic Acids to Various Nitrogen-Containing Compounds in the One-Pot Exploiting Curtius Rearrangement.
    Kumar A; Kumar N; Sharma R; Bhargava G; Mahajan D
    J Org Chem; 2019 Sep; 84(17):11323-11334. PubMed ID: 31393719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved and General Manganese-Catalyzed N-Methylation of Aromatic Amines Using Methanol.
    Neumann J; Elangovan S; Spannenberg A; Junge K; Beller M
    Chemistry; 2017 Apr; 23(23):5410-5413. PubMed ID: 28106299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cobalt(II)porphyrin-Mediated Selective Synthesis of 1,5-Diketones via an Interrupted-Borrowing Hydrogen Strategy Using Methanol as a C1 Source.
    Biswal P; Samser S; Nayak P; Chandrasekhar V; Venkatasubbaiah K
    J Org Chem; 2021 May; 86(9):6744-6754. PubMed ID: 33902283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of 3-aryl-2-arylamidobenzofurans based on the Curtius rearrangement.
    Carrër A; Florent JC; Auvrouin E; Rousselle P; Bertounesque E
    J Org Chem; 2011 Apr; 76(8):2502-20. PubMed ID: 21391629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Curtius rearrangement of aromatic carboxylic acids to access protected anilines and aromatic ureas.
    Lebel H; Leogane O
    Org Lett; 2006 Dec; 8(25):5717-20. PubMed ID: 17134255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic Decarboxylative C-N Formation to Generate Alkyl, Alkenyl, and Aryl Amines.
    Zhang Y; Ge X; Lu H; Li G
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1845-1852. PubMed ID: 33026167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides.
    Wu X; Hu L
    J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ru-Catalyzed Selective Catalytic Methylation and Methylenation Reaction Employing Methanol as the C1 Source.
    Biswas N; Srimani D
    J Org Chem; 2021 Aug; 86(15):10544-10554. PubMed ID: 34263597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tandem Transformation of Nitro Compounds into N-Methylated Amines: Greener Strategy for the Utilization of Methanol as a Methylating Agent.
    Paul B; Shee S; Chakrabarti K; Kundu S
    ChemSusChem; 2017 Jun; 10(11):2370-2374. PubMed ID: 28422436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral amines derived from 2-arylpropionic acids: novel reagents for the liquid chromatographic (LC) fluorescence assay of optically active carboxylic acid xenobiotics.
    Spahn H; Langguth P
    Pharm Res; 1990 Dec; 7(12):1262-8. PubMed ID: 2095564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pd-Catalyzed Carbonylation of Acyl Azides.
    Li Z; Xu S; Huang B; Yuan C; Chang W; Fu B; Jiao L; Wang P; Zhang Z
    J Org Chem; 2019 Aug; 84(15):9497-9508. PubMed ID: 31268718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process.
    Ghandi M; Salahi S; Taheri A; Abbasi A
    Mol Divers; 2018 May; 22(2):291-303. PubMed ID: 29230611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unprecedented Transformation of a Directing Group Generated In Situ and Its Application in the One-Pot Synthesis of 2-Alkenyl Benzonitriles.
    Kumar R; Arigela RK; Kundu B
    Chemistry; 2015 Aug; 21(33):11807-12. PubMed ID: 26139148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intramolecular amination via acid-catalyzed rearrangement of azides: a potent alternative to intermolecular direct electrophilic route.
    Stankevich KS; Lavrinenko AK; Filimonov VD
    J Mol Model; 2021 Sep; 27(10):305. PubMed ID: 34590180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A solid-phase synthesis of N,N'-disubstituted ureas and Perhydroimidazo.
    Migawa MT; Swayze EE
    Org Lett; 2000 Oct; 2(21):3309-11. PubMed ID: 11029197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct acyl substitution of carboxylic acids: a chemoselective O- to N-acyl migration in the traceless Staudinger ligation.
    Kosal AD; Wilson EE; Ashfeld BL
    Chemistry; 2012 Nov; 18(45):14444-53. PubMed ID: 23001688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of the curtius rearrangement of acryloyl azides in the synthesis of 3,5-disubstituted pyridines: mechanistic studies.
    Chuang TH; Chen YC; Pola S
    J Org Chem; 2010 Oct; 75(19):6625-30. PubMed ID: 20828169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbonyldiimidazole (CDI) mediated synthesis of Nα-protected amino acid azides: application to the one-pot preparation of ureidopeptides.
    Vasantha B; Vishwanatha TM; Sureshbabu VV
    Protein Pept Lett; 2011 Nov; 18(11):1093-8. PubMed ID: 21675949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation and degradation of urea derivatives in the azide method of peptide synthesis. Part 1. The Curtius rearrangement and urea formation.
    Inouye K; Watanabe K; Shin M
    J Chem Soc Perkin 1; 1977; (17):1905-11. PubMed ID: 561800
    [No Abstract]   [Full Text] [Related]  

  • 40. Proton-Transfer-Based Azides with Fluorescence Off-On Response for Detection of Hydrogen Sulfide: An Experimental, Theoretical, and Bioimaging Study.
    Brito da Silva C; Gil ES; da Silveira Santos F; Morás AM; Steffens L; Bruno Gonçalves PF; Moura DJ; Lüdtke DS; Rodembusch FS
    J Org Chem; 2018 Dec; 83(24):15210-15224. PubMed ID: 30472829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.