These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32677642)

  • 1. In flow metal-enhanced fluorescence for biolabelling and biodetection.
    Gontero D; Veglia AV; Bracamonte AG
    Photochem Photobiol Sci; 2020 Sep; 19(9):1168-1188. PubMed ID: 32677642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-coloured enhanced luminescence imaging by targeted switch on/off laser MEF coupling for synthetic biosensing of nanostructured human serum albumin.
    Palacios LRG; Martinez SM; Tettamanti CS; Inda A; Quinteros DA; Bracamonte AG
    Photochem Photobiol Sci; 2023 Dec; 22(12):2735-2758. PubMed ID: 37787958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
    Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U
    ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles.
    Stobiecka M; Hepel M
    Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic non-classical luminescence generation by enhanced silica nanophotonics based on nano-bio-FRET.
    Salinas C; Amé MV; Bracamonte AG
    RSC Adv; 2020 May; 10(35):20620-20637. PubMed ID: 35517765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of model silica-gold core-shell nanohybrid systems to demonstrate plasmonic enhancement of fluorescence.
    Roy S; Dixit CK; Woolley R; O'Kennedy R; McDonagh C
    Nanotechnology; 2012 Aug; 23(32):325603. PubMed ID: 22825430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AuNS@Ag core-shell nanocubes grafted with rhodamine for concurrent metal-enhanced fluorescence and surfaced enhanced Raman determination of mercury ions.
    Li H; Chen Q; Hassan MM; Ouyang Q; Jiao T; Xu Y; Chen M
    Anal Chim Acta; 2018 Aug; 1018():94-103. PubMed ID: 29605140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization, detection, and counting of metal nanoparticles using flow cytometry.
    Zucker RM; Ortenzio JN; Boyes WK
    Cytometry A; 2016 Feb; 89(2):169-83. PubMed ID: 26619039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs.
    Aslan K; Wu M; Lakowicz JR; Geddes CD
    J Fluoresc; 2007 Mar; 17(2):127-31. PubMed ID: 17279332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of fluorescent silica-Au hybrid nanostructures for targeted imaging of tumor cells.
    Cao F; Deng R; Liu D; Song S; Wang S; Su S; Zhang H
    Dalton Trans; 2011 May; 40(18):4800-2. PubMed ID: 21455503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation.
    Kubiliūtė R; Maximova KA; Lajevardipour A; Yong J; Hartley JS; Mohsin AS; Blandin P; Chon JW; Sentis M; Stoddart PR; Kabashin A; Rotomskis R; Clayton AH; Juodkazis S
    Int J Nanomedicine; 2013; 8():2601-11. PubMed ID: 23888114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement.
    Guo L; Guan A; Lin X; Zhang C; Chen G
    Talanta; 2010 Oct; 82(5):1696-700. PubMed ID: 20875565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label.
    Dou X; Zhang L; Liu C; Li Q; Luo J; Yang M
    Mikrochim Acta; 2017 Dec; 185(1):41. PubMed ID: 29594500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodamine B immobilized on hollow Au-HMS material for naked-eye detection of Hg2+ in aqueous media.
    Zhang N; Li G; Cheng Z; Zuo X
    J Hazard Mater; 2012 Aug; 229-230():404-10. PubMed ID: 22771346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate coated fluorescent mesoporous silica particles for bacterial imaging.
    Kirla H; Hughes L; Henry DJ
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110751. PubMed ID: 31901686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Surface Enhanced Florescence of Carbon Dot Labeled Bacteria Cells Observed with High Contrast on Gold Film.
    Bukasov R; Filchakova O; Gudun K; Bouhrara M
    J Fluoresc; 2018 Jan; 28(1):1-4. PubMed ID: 29127572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Infrared-Fluorescent Probes for Bioapplications Based on Silica-Coated Gold Nanobipyramids with Distance-Dependent Plasmon-Enhanced Fluorescence.
    Niu C; Song Q; He G; Na N; Ouyang J
    Anal Chem; 2016 Nov; 88(22):11062-11069. PubMed ID: 27735184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTDT simulations of local plasmonic fields for theranostic core-shell gold-based nanoparticles.
    Kon I; Zyubin A; Samusev I
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):1398-1403. PubMed ID: 32902425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles.
    Estrada LC; Roberti MJ; Simoncelli S; Levi V; Aramendía PF; Martínez OE
    J Phys Chem B; 2012 Feb; 116(7):2306-13. PubMed ID: 22235949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles enhance fluorescence signals by flow cytometry at low antibody concentrations.
    Reis DS; de Oliveira VL; Silva ML; Paniago RM; Ladeira LO; Andrade LM
    J Mater Chem B; 2021 Feb; 9(5):1414-1423. PubMed ID: 33464273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.