These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 32677758)
1. Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes. Huang R; Xu R; Dulai PS Stat Med; 2020 Oct; 39(24):3397-3411. PubMed ID: 32677758 [TBL] [Abstract][Full Text] [Related]
2. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies. Liu T; Hogan JW Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292 [TBL] [Abstract][Full Text] [Related]
3. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies. Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331 [TBL] [Abstract][Full Text] [Related]
5. unmconf : an R package for Bayesian regression with unmeasured confounders. Hebdon R; Stamey J; Kahle D; Zhang X BMC Med Res Methodol; 2024 Sep; 24(1):195. PubMed ID: 39244581 [TBL] [Abstract][Full Text] [Related]
6. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases. Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160 [TBL] [Abstract][Full Text] [Related]
7. Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation. Groenwold RHH; Shofty I; Miočević M; van Smeden M; Klugkist I BMC Med Res Methodol; 2018 Dec; 18(1):174. PubMed ID: 30577773 [TBL] [Abstract][Full Text] [Related]
8. Comparing g-computation, propensity score-based weighting, and targeted maximum likelihood estimation for analyzing externally controlled trials with both measured and unmeasured confounders: a simulation study. Ren J; Cislo P; Cappelleri JC; Hlavacek P; DiBonaventura M BMC Med Res Methodol; 2023 Jan; 23(1):18. PubMed ID: 36647031 [TBL] [Abstract][Full Text] [Related]
9. Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data. Burne RM; Abrahamowicz M Stat Methods Med Res; 2019 Feb; 28(2):357-371. PubMed ID: 28835193 [TBL] [Abstract][Full Text] [Related]
10. Summarizing causal differences in survival curves in the presence of unmeasured confounding. Martínez-Camblor P; MacKenzie TA; Staiger DO; Goodney PP; O'Malley AJ Int J Biostat; 2020 Sep; 17(2):223-240. PubMed ID: 32946418 [TBL] [Abstract][Full Text] [Related]
11. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study. McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945 [TBL] [Abstract][Full Text] [Related]
12. Testing causal effects in observational survival data using propensity score matching design. Lu B; Cai D; Tong X Stat Med; 2018 May; 37(11):1846-1858. PubMed ID: 29399833 [TBL] [Abstract][Full Text] [Related]
13. Assessing the impact of unmeasured confounders for credible and reliable real-world evidence. Zhang X; Stamey JD; Mathur MB Pharmacoepidemiol Drug Saf; 2020 Oct; 29(10):1219-1227. PubMed ID: 32929830 [TBL] [Abstract][Full Text] [Related]
14. [How to adjust confounders in studies on observational comparative effectiveness: (3) approaches on sensitivity analysis for confounder adjustment]. Huang LL; Zhao Y; Wei YY; Chen F Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Dec; 40(12):1645-1649. PubMed ID: 32062931 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity analysis for the effects of multiple unmeasured confounders. Groenwold RH; Sterne JA; Lawlor DA; Moons KG; Hoes AW; Tilling K Ann Epidemiol; 2016 Sep; 26(9):605-11. PubMed ID: 27576907 [TBL] [Abstract][Full Text] [Related]
16. Simulation-based sensitivity analysis for causal mediation studies. Qin X; Yang F Psychol Methods; 2022 Dec; 27(6):1000-1013. PubMed ID: 34914470 [TBL] [Abstract][Full Text] [Related]
17. Flexible propensity score estimation strategies for clustered data in observational studies. Chang TH; Nguyen TQ; Lee Y; Jackson JW; Stuart EA Stat Med; 2022 Nov; 41(25):5016-5032. PubMed ID: 36263918 [TBL] [Abstract][Full Text] [Related]
18. [Confounder adjustment in observational comparative effectiveness researches: (2) statistical adjustment approaches for unmeasured confounders]. Huang LL; Wei YY; Chen F Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1450-1455. PubMed ID: 31838820 [TBL] [Abstract][Full Text] [Related]
19. causalCmprsk: An R package for nonparametric and Cox-based estimation of average treatment effects in competing risks data. Vakulenko-Lagun B; Magdamo C; Charpignon ML; Zheng B; Albers MW; Das S Comput Methods Programs Biomed; 2023 Dec; 242():107819. PubMed ID: 37774426 [TBL] [Abstract][Full Text] [Related]
20. Adjusting for indirectly measured confounding using large-scale propensity score. Zhang L; Wang Y; Schuemie MJ; Blei DM; Hripcsak G J Biomed Inform; 2022 Oct; 134():104204. PubMed ID: 36108816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]