These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 32677758)
21. Bayesian data fusion: Probabilistic sensitivity analysis for unmeasured confounding using informative priors based on secondary data. Comment L; Coull BA; Zigler C; Valeri L Biometrics; 2022 Jun; 78(2):730-741. PubMed ID: 33527348 [TBL] [Abstract][Full Text] [Related]
22. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions. Kasza J; Wolfe R; Schuster T Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913 [TBL] [Abstract][Full Text] [Related]
23. Sensitivity analyses to estimate the potential impact of unmeasured confounding in causal research. Groenwold RH; Nelson DB; Nichol KL; Hoes AW; Hak E Int J Epidemiol; 2010 Feb; 39(1):107-17. PubMed ID: 19948779 [TBL] [Abstract][Full Text] [Related]
24. Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis. McCandless LC; Somers JM Stat Methods Med Res; 2019 Feb; 28(2):515-531. PubMed ID: 28882092 [TBL] [Abstract][Full Text] [Related]
25. Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding. Suk Y; Kang H Psychometrika; 2022 Mar; 87(1):310-343. PubMed ID: 34652613 [TBL] [Abstract][Full Text] [Related]
26. [Probe variables: a tool for identification of unmeasured confounders in an observational study]. Hong X; Yin JC; Wang B Zhonghua Liu Xing Bing Xue Za Zhi; 2021 Apr; 42(4):735-739. PubMed ID: 34814460 [TBL] [Abstract][Full Text] [Related]
27. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Austin PC Stat Med; 2014 Mar; 33(7):1242-58. PubMed ID: 24122911 [TBL] [Abstract][Full Text] [Related]
28. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions. Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047 [TBL] [Abstract][Full Text] [Related]
29. Bespoke Instruments: A new tool for addressing unmeasured confounders. Richardson DB; Tchetgen Tchetgen EJ Am J Epidemiol; 2022 Mar; 191(5):939-947. PubMed ID: 34907434 [TBL] [Abstract][Full Text] [Related]
30. Regularized Regression Versus the High-Dimensional Propensity Score for Confounding Adjustment in Secondary Database Analyses. Franklin JM; Eddings W; Glynn RJ; Schneeweiss S Am J Epidemiol; 2015 Oct; 182(7):651-9. PubMed ID: 26233956 [TBL] [Abstract][Full Text] [Related]
31. Assessing causal treatment effect estimation when using large observational datasets. John ER; Abrams KR; Brightling CE; Sheehan NA BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969 [TBL] [Abstract][Full Text] [Related]
32. Sensitivity analysis for unmeasured confounding in a marginal structural Cox proportional hazards model. Klungsøyr O; Sexton J; Sandanger I; Nygård JF Lifetime Data Anal; 2009 Jun; 15(2):278-94. PubMed ID: 19109770 [TBL] [Abstract][Full Text] [Related]
33. The impact of moderator by confounder interactions in the assessment of treatment effect modification: a simulation study. Marsden AM; Dixon WG; Dunn G; Emsley R BMC Med Res Methodol; 2022 Apr; 22(1):88. PubMed ID: 35369866 [TBL] [Abstract][Full Text] [Related]
34. Magnitude and direction of missing confounders had different consequences on treatment effect estimation in propensity score analysis. Nguyen TL; Collins GS; Spence J; Fontaine C; Daurès JP; Devereaux PJ; Landais P; Le Manach Y J Clin Epidemiol; 2017 Jul; 87():87-97. PubMed ID: 28412467 [TBL] [Abstract][Full Text] [Related]
35. Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Lin DY; Psaty BM; Kronmal RA Biometrics; 1998 Sep; 54(3):948-63. PubMed ID: 9750244 [TBL] [Abstract][Full Text] [Related]
36. Sensitivity analyses of unmeasured and partially-measured confounders using multiple imputation in a vaccine safety study. Xu S; Clarke CL; Newcomer SR; Daley MF; Glanz JM Pharmacoepidemiol Drug Saf; 2021 Sep; 30(9):1200-1213. PubMed ID: 33988275 [TBL] [Abstract][Full Text] [Related]
37. Propensity score matching after multiple imputation when a confounder has missing data. Ségalas C; Leyrat C; Carpenter JR; Williamson E Stat Med; 2023 Mar; 42(7):1082-1095. PubMed ID: 36695043 [TBL] [Abstract][Full Text] [Related]
38. Propensity scores for confounder adjustment when assessing the effects of medical interventions using nonexperimental study designs. Stürmer T; Wyss R; Glynn RJ; Brookhart MA J Intern Med; 2014 Jun; 275(6):570-80. PubMed ID: 24520806 [TBL] [Abstract][Full Text] [Related]
39. A flexible, interpretable framework for assessing sensitivity to unmeasured confounding. Dorie V; Harada M; Carnegie NB; Hill J Stat Med; 2016 Sep; 35(20):3453-70. PubMed ID: 27139250 [TBL] [Abstract][Full Text] [Related]
40. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure. Li Y; Lee Y; Port FK; Robinson BM Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]