These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32677822)
21. Response of villin headpiece-capped gold nanoparticles to ultrafast laser heating. Hassan S; Schade M; Shaw CP; Lévy R; Hamm P J Phys Chem B; 2014 Jul; 118(28):7954-62. PubMed ID: 24597838 [TBL] [Abstract][Full Text] [Related]
22. Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. Jain PK; Qian W; El-Sayed MA J Am Chem Soc; 2006 Feb; 128(7):2426-33. PubMed ID: 16478198 [TBL] [Abstract][Full Text] [Related]
23. Melting of dsDNA attached with AuNPs. Mathur N; Singh N Eur Phys J E Soft Matter; 2023 Jul; 46(7):58. PubMed ID: 37477744 [TBL] [Abstract][Full Text] [Related]
24. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy. Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495 [TBL] [Abstract][Full Text] [Related]
25. Comparative Effect Between Laser and Radiofrequency Heating of RGD-Gold Nanospheres on MCF7 Cell Viability. Sánchez-Hernández L; Ferro-Flores G; Jiménez-Mancilla NP; Luna-Gutiérrez MA; Santos-Cuevas CL; Ocampo-García BE; Azorín-Vega E; Isaac-Olivé K J Nanosci Nanotechnol; 2015 Dec; 15(12):9840-8. PubMed ID: 26682422 [TBL] [Abstract][Full Text] [Related]
26. Fluorescence recognition of double-stranded DNA based on the quenching of gold nanoparticles to a fluorophore labeled DNA probe. Miao X; Li Z; Ling L Analyst; 2016 Oct; 141(20):5829-5834. PubMed ID: 27508282 [TBL] [Abstract][Full Text] [Related]
27. Transient photothermal spectra of plasmonic nanobubbles. Lukianova-Hleb EY; Sassaroli E; Jones A; Lapotko DO Langmuir; 2012 Mar; 28(10):4858-66. PubMed ID: 22339620 [TBL] [Abstract][Full Text] [Related]
28. Unraveling the Nano-Bio Interface Interactions of a Lipase Adsorbed on Gold Nanoparticles under Laser Excitation. de Barros HR; da Silva RTP; Fernandes R; Toro-Mendoza J; Coluzza I; Temperini MLA; Cordoba de Torresi SI Langmuir; 2024 Mar; 40(11):5663-5672. PubMed ID: 38451216 [TBL] [Abstract][Full Text] [Related]
29. Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations. Guerrero-Florez V; Mendez-Sanchez SC; Patrón-Soberano OA; Rodríguez-González V; Blach D; Martínez O F J Mater Chem B; 2020 Apr; 8(14):2862-2875. PubMed ID: 32186317 [TBL] [Abstract][Full Text] [Related]
30. Sharpening the thermal release of DNA from nanoparticles: towards a sequential release strategy. Díaz JA; Gibbs-Davis JM Small; 2013 Sep; 9(17):2862-71. PubMed ID: 23341260 [TBL] [Abstract][Full Text] [Related]
31. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells. Rau LR; Huang WY; Liaw JW; Tsai SW Int J Nanomedicine; 2016; 11():3461-73. PubMed ID: 27555768 [TBL] [Abstract][Full Text] [Related]
32. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles. Yakunin AN; Avetisyan YA; Tuchin VV J Biomed Opt; 2015 May; 20(5):051030. PubMed ID: 25629389 [TBL] [Abstract][Full Text] [Related]
33. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method. Reynoso FJ; Lee CD; Cheong SK; Cho SH Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455 [TBL] [Abstract][Full Text] [Related]
34. Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water. Hatef A; Meunier M Opt Express; 2015 Feb; 23(3):1967-80. PubMed ID: 25836068 [TBL] [Abstract][Full Text] [Related]
35. Enhanced Nanobubble Formation: Gold Nanoparticle Conjugation to Qβ Virus-like Particles. Parsamian P; Liu Y; Xie C; Chen Z; Kang P; Wijesundara YH; Al-Kharji NM; Ehrman RN; Trashi O; Randrianalisoa J; Zhu X; D'Souza M; Wilson LA; Kim MJ; Qin Z; Gassensmith JJ ACS Nano; 2023 Apr; 17(8):7797-7805. PubMed ID: 36884260 [TBL] [Abstract][Full Text] [Related]
36. Nanoscale heating of laser irradiated single gold nanoparticles in liquid. Honda M; Saito Y; Smith NI; Fujita K; Kawata S Opt Express; 2011 Jun; 19(13):12375-83. PubMed ID: 21716475 [TBL] [Abstract][Full Text] [Related]
37. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition. Liu F; Guo Y; Hu Y; Zhang X; Zheng X Anal Bioanal Chem; 2019 Sep; 411(22):5845-5854. PubMed ID: 31278549 [TBL] [Abstract][Full Text] [Related]
38. A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA. Ma H; Li Z; Xue N; Cheng Z; Miao X Mikrochim Acta; 2018 Jan; 185(2):93. PubMed ID: 29594738 [TBL] [Abstract][Full Text] [Related]
39. Photothermal lens detection of gold nanoparticles: theory and experiments. Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698 [TBL] [Abstract][Full Text] [Related]