These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32677825)

  • 1. Quantifying Direct and Indirect Spatial Food-Energy-Water (FEW) Nexus in China.
    Liang Y; Li Y; Liang S; Feng C; Xu L; Qi J; Yang X; Wang Y; Zhang C; Li K; Li H; Yang Z
    Environ Sci Technol; 2020 Aug; 54(16):9791-9803. PubMed ID: 32677825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping spatial supply chain paths for embodied water flows driven by food demand in China.
    Li K; Liang S; Liang Y; Feng C; Qi J; Xu L; Yang Z
    Sci Total Environ; 2021 Sep; 786():147480. PubMed ID: 33965816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the critical transmission sectors with energy-water nexus pressures in China's supply chain networks.
    Li Y; Yang L; Wang D; Zhou Y; He W; Li B; Yang Y; Lv H
    J Environ Manage; 2021 Jul; 289():112518. PubMed ID: 33839607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis.
    Deng HM; Wang C; Cai WJ; Liu Y; Zhang LX
    Sci Total Environ; 2020 Jun; 720():137635. PubMed ID: 32325592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uneven development within China: Implications for interprovincial energy, water and arable land requirements.
    Zhang B; Wang Q; Liu Y; Zhang Y; Wu X; Sun X; Qiao H
    J Environ Manage; 2020 May; 261():110231. PubMed ID: 32148301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What Induces the Energy-Water Nexus in China's Supply Chains?
    Shi J; Li H; An H; Guan J; Ma N
    Environ Sci Technol; 2020 Jan; 54(1):372-379. PubMed ID: 31795632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of virtual water embodied in food: A new perspective.
    Zhai M; Huang G; Liu L; Xu X; Li J
    Sci Total Environ; 2019 Apr; 659():872-883. PubMed ID: 31096417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating supply-demand matching of ecosystem services considering water-energy-food nexus and synergies/trade-offs in the Hangzhou of China.
    Ding T; Chen J
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):54568-54585. PubMed ID: 36877392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Total Factor Productivity and Influential Factors of the Regional Water-Energy-Food Nexus: A Case Study on Inner Mongolia, China.
    Chen J; Ding T; Wang H; Yu X
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31443532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling and Coordination Degrees of the Core Water⁻Energy⁻Food Nexus in China.
    Xu S; He W; Shen J; Degefu DM; Yuan L; Kong Y
    Int J Environ Res Public Health; 2019 May; 16(9):. PubMed ID: 31083596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiregional input-output model for China's farm land and water use.
    Guo S; Shen GQ
    Environ Sci Technol; 2015 Jan; 49(1):403-14. PubMed ID: 25486067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A system dynamics model to simulate the water-energy-food nexus of resource-based regions: A case study in Daqing City, China.
    Wen C; Dong W; Zhang Q; He N; Li T
    Sci Total Environ; 2022 Feb; 806(Pt 1):150497. PubMed ID: 34583077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa.
    Mpandeli S; Naidoo D; Mabhaudhi T; Nhemachena C; Nhamo L; Liphadzi S; Hlahla S; Modi AT
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30347771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Objective Optimization of a Regional Water-Energy-Food System Considering Environmental Constraints: A Case Study of Inner Mongolia, China.
    Chen J; Ding T; Li M; Wang H
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32962111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Globalized energy-water nexus through international trade: The dominant role of non-energy commodities for worldwide energy-related water use.
    Liu Y; Chen B; Chen G; Li Z; Meng J; Tasawar H
    Sci Total Environ; 2020 Sep; 736():139582. PubMed ID: 32485378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balancing water resource conservation and food security in China.
    Dalin C; Qiu H; Hanasaki N; Mauzerall DL; Rodriguez-Iturbe I
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4588-93. PubMed ID: 25825748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-perspective energy-carbon nexus analysis for developing China's policies of CO
    Zhai M; Huang G; Liu H; Liu L; He C; Liu Z
    Sci Total Environ; 2020 Feb; 705():135857. PubMed ID: 31841923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses.
    Al-Saidi M; Hussein H
    Sci Total Environ; 2021 Jul; 779():146529. PubMed ID: 34030272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling coordination analysis of China's provincial water-energy-food nexus.
    Qi Y; Farnoosh A; Lin L; Liu H
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):23303-23313. PubMed ID: 34802097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy simulation modeling for water-energy-food nexus system: a systematic review.
    Vahabzadeh M; Afshar A; Molajou A
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):5487-5501. PubMed ID: 36418836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.