BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32677848)

  • 1. Effects of Distraction in On-Road Level 2 Automated Driving: Impacts on Glance Behavior and Takeover Performance.
    Yang S; Kuo J; Lenné MG
    Hum Factors; 2021 Dec; 63(8):1485-1497. PubMed ID: 32677848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Driver Features for Cognitive Distraction Detection and Validation in Manual and Level 2 Automated Driving.
    Yang S; Wilson KM; Roady T; Kuo J; Lenné MG
    Hum Factors; 2022 Jun; 64(4):746-759. PubMed ID: 33054370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass half-full: On-road glance metrics differentiate crashes from near-crashes in the 100-Car data.
    Seppelt BD; Seaman S; Lee J; Angell LS; Mehler B; Reimer B
    Accid Anal Prev; 2017 Oct; 107():48-62. PubMed ID: 28787612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for naturalistic glance behavior around Tesla Autopilot disengagements.
    Morando A; Gershon P; Mehler B; Reimer B
    Accid Anal Prev; 2021 Oct; 161():106348. PubMed ID: 34492560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining drivers' eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix.
    Wang Y; Bao S; Du W; Ye Z; Sayer JR
    J Safety Res; 2017 Dec; 63():149-155. PubMed ID: 29203013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing feedback to mitigate teen distracted driving: A social norms approach.
    Merrikhpour M; Donmez B
    Accid Anal Prev; 2017 Jul; 104():185-194. PubMed ID: 28544953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chinese handwriting while driving: Effects of handwritten box size on in-vehicle information systems usability and driver distraction.
    Zhong Q; Guo G; Zhi J
    Traffic Inj Prev; 2023; 24(1):26-31. PubMed ID: 36178277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related differences in effects of non-driving related tasks on takeover performance in automated driving.
    Wu Y; Kihara K; Hasegawa K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    J Safety Res; 2020 Feb; 72():231-238. PubMed ID: 32199568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.
    Wandtner B; Schömig N; Schmidt G
    Hum Factors; 2018 Sep; 60(6):870-881. PubMed ID: 29617161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How dangerous is looking away from the road? Algorithms predict crash risk from glance patterns in naturalistic driving.
    Liang Y; Lee JD; Yekhshatyan L
    Hum Factors; 2012 Dec; 54(6):1104-16. PubMed ID: 23397818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Partial Automation on Driver Attention: A Naturalistic Driving Study.
    Gaspar J; Carney C
    Hum Factors; 2019 Dec; 61(8):1261-1276. PubMed ID: 30920852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking out or Looking Away?-Exploring the Impact of Driving With a Passenger on Young Drivers' Eye Glance Behavior.
    Mehrotra S; Zhang F; Roberts SC
    Hum Factors; 2023 Nov; 65(7):1306-1322. PubMed ID: 35466736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver distraction and its effects on partially automated driving performance: A driving simulator study among young-experienced drivers.
    Zangi N; Srour-Zreik R; Ridel D; Chasidim H; Borowsky A
    Accid Anal Prev; 2022 Mar; 166():106565. PubMed ID: 35032704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non-Driving Related Tasks on Takeover Time and Takeover Quality.
    Naujoks F; Purucker C; Wiedemann K; Marberger C
    Hum Factors; 2019 Jun; 61(4):596-613. PubMed ID: 30689440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral Changes to Repeated Takeovers in Highly Automated Driving: Effects of the Takeover-Request Design and the Nondriving-Related Task Modality.
    Roche F; Somieski A; Brandenburg S
    Hum Factors; 2019 Aug; 61(5):839-849. PubMed ID: 30517032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of different takeover request interfaces on takeover behavior and performance during conditionally automated driving.
    Ou YK; Huang WX; Fang CW
    Accid Anal Prev; 2021 Nov; 162():106425. PubMed ID: 34601181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distracted driving behavior in patients with insomnia.
    Zhang Q; Xu L; Yan Y; Li G; Qiao D; Tian J
    Accid Anal Prev; 2023 Apr; 183():106971. PubMed ID: 36657234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep in highly automated driving: Takeover performance after waking up.
    Wörle J; Metz B; Othersen I; Baumann M
    Accid Anal Prev; 2020 Sep; 144():105617. PubMed ID: 32540623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using naturalistic driving study data to investigate the impact of driver distraction on driver's brake reaction time in freeway rear-end events in car-following situation.
    Gao J; Davis GA
    J Safety Res; 2017 Dec; 63():195-204. PubMed ID: 29203019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driver response and recovery following automation initiated disengagement in real-world hands-free driving.
    Gershon P; Mehler B; Reimer B
    Traffic Inj Prev; 2023; 24(4):356-361. PubMed ID: 36988583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.