BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32678070)

  • 1. Acetylation-mediated degradation of HSD17B4 regulates the progression of prostate cancer.
    Huang H; Liu R; Huang Y; Feng Y; Fu Y; Chen L; Chen Z; Cai Y; Zhang Y; Chen Y
    Aging (Albany NY); 2020 Jul; 12(14):14699-14717. PubMed ID: 32678070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone.
    Zhang Y; Xu YY; Yao CB; Li JT; Zhao XN; Yang HB; Zhang M; Yin M; Chen J; Lei QY
    Autophagy; 2017 Mar; 13(3):538-553. PubMed ID: 28296597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-κB increased expression of 17β-hydroxysteroid dehydrogenase 4 promotes HepG2 proliferation via inactivating estradiol.
    Lu X; Ma P; Shi Y; Yao M; Hou L; Zhang P; Jiang L
    Mol Cell Endocrinol; 2015 Feb; 401():1-11. PubMed ID: 25448063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biological functions and mechanism of miR‑212 in prostate cancer proliferation, migration and invasion via targeting Engrailed-2.
    Zhou Y; Ji Z; Yan W; Zhou Z; Li H
    Oncol Rep; 2017 Sep; 38(3):1411-1419. PubMed ID: 28713997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer.
    Ding M; Jiang CY; Zhang Y; Zhao J; Han BM; Xia SJ
    J Exp Clin Cancer Res; 2020 Feb; 39(1):28. PubMed ID: 32019578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing antineoplastic agents that target peroxisomal enzymes: cytisine-linked isoflavonoids as inhibitors of hydroxysteroid 17-beta-dehydrogenase-4 (HSD17B4).
    Frasinyuk MS; Zhang W; Wyrebek P; Yu T; Xu X; Sviripa VM; Bondarenko SP; Xie Y; Ngo HX; Morris AJ; Mohler JL; Fiandalo MV; Watt DS; Liu C
    Org Biomol Chem; 2017 Sep; 15(36):7623-7629. PubMed ID: 28868548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The previously uncharacterized lncRNA APP promotes prostate cancer progression by acting as a competing endogenous RNA.
    Shi X; Zhang W; Nian X; Lu X; Li Y; Liu F; Wang F; He B; Zhao L; Zhu Y; Ren S; Sun Y
    Int J Cancer; 2020 Jan; 146(2):475-486. PubMed ID: 31107971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer.
    Ling Z; Wang X; Tao T; Zhang L; Guan H; You Z; Lu K; Zhang G; Chen S; Wu J; Qian J; Liu H; Xu B; Chen M
    J Exp Clin Cancer Res; 2017 Nov; 36(1):159. PubMed ID: 29141691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CIP2A mediates prostate cancer progression via the c-Myc signaling pathway.
    Guo Z; Liu D; Su Z
    Tumour Biol; 2015 Jun; 36(6):4777-83. PubMed ID: 25636449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MTSS1 hypermethylation is associated with prostate cancer progression.
    Chen J; Huang L; Zhu Q; Wang Z; Tang Z
    J Cell Physiol; 2020 Mar; 235(3):2687-2697. PubMed ID: 31541465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estrogen induces androgen-repressed SOX4 expression to promote progression of prostate cancer cells.
    Yang M; Wang J; Wang L; Shen C; Su B; Qi M; Hu J; Gao W; Tan W; Han B
    Prostate; 2015 Sep; 75(13):1363-75. PubMed ID: 26015225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 17β‑hydroxysteroid dehydrogenase 4 induces liver cancer proliferation‑associated genes via STAT3 activation.
    Lu X; Kong L; Wang X; Liu W; Ma P; Jiang L
    Oncol Rep; 2019 Mar; 41(3):2009-2019. PubMed ID: 30747222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiR-203 down-regulates Rap1A and suppresses cell proliferation, adhesion and invasion in prostate cancer.
    Xiang J; Bian C; Wang H; Huang S; Wu D
    J Exp Clin Cancer Res; 2015 Jan; 34(1):8. PubMed ID: 25636908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LncRNA UCA1 acts as a sponge of miR-204 to up-regulate CXCR4 expression and promote prostate cancer progression.
    He C; Lu X; Yang F; Qin L; Guo Z; Sun Y; Wu J
    Biosci Rep; 2019 May; 39(5):. PubMed ID: 30940776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation-dependent regulation of TPD52 isoform 1 modulates chaperone-mediated autophagy in prostate cancer.
    Fan Y; Hou T; Gao Y; Dan W; Liu T; Liu B; Chen Y; Xie H; Yang Z; Chen J; Zeng J; Li L
    Autophagy; 2021 Dec; 17(12):4386-4400. PubMed ID: 34034634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disabled homolog 2 is required for migration and invasion of prostate cancer cells.
    Xie Y; Zhang Y; Jiang L; Zhang M; Chen Z; Liu D; Huang Q
    Front Med; 2015 Sep; 9(3):312-21. PubMed ID: 26143155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulation of protein kinase, DNA-activated, catalytic polypeptide attenuates tumor progression and is an independent prognostic predictor of survival in prostate cancer.
    Zhang X; Wang Y; Ning Y
    Urol Oncol; 2017 Mar; 35(3):111.e15-111.e23. PubMed ID: 27856181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis.
    Yang G; Yin H; Lin F; Gao S; Zhan K; Tong H; Tang X; Pan Q; Gou X
    Pathol Res Pract; 2020 Apr; 216(4):152851. PubMed ID: 32057513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer.
    Nip H; Dar AA; Saini S; Colden M; Varahram S; Chowdhary H; Yamamura S; Mitsui Y; Tanaka Y; Kato T; Hashimoto Y; Shiina M; Kulkarni P; Dasgupta P; Imai-Sumida M; Tabatabai ZL; Greene K; Deng G; Dahiya R; Majid S
    Oncotarget; 2016 Oct; 7(42):68371-68384. PubMed ID: 27634912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GLUT1 regulates cell glycolysis and proliferation in prostate cancer.
    Xiao H; Wang J; Yan W; Cui Y; Chen Z; Gao X; Wen X; Chen J
    Prostate; 2018 Feb; 78(2):86-94. PubMed ID: 29105798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.