These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32678139)

  • 1. Exploiting defective RRAM array as synapses of HTM spatial pooler with boost-factor adjustment scheme for defect-tolerant neuromorphic systems.
    Woo J; Van Nguyen T; Kim JH; Im JP; Im S; Kim Y; Min KS; Moon SE
    Sci Rep; 2020 Jul; 10(1):11703. PubMed ID: 32678139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighted Synapses Without Carry Operations for RRAM-Based Neuromorphic Systems.
    Liao Y; Deng N; Wu H; Gao B; Zhang Q; Qian H
    Front Neurosci; 2018; 12():167. PubMed ID: 29615856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Network Training Acceleration With RRAM-Based Hybrid Synapses.
    Choi W; Kwak M; Kim S; Hwang H
    Front Neurosci; 2021; 15():690418. PubMed ID: 34248492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Circuit of Memristor and Complementary Metal-Oxide-Semiconductor for Defect-Tolerant Spatial Pooling with Boost-Factor Adjustment.
    Nguyen TV; Pham KV; Min KS
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31266255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems.
    Zhang Q; Wu H; Yao P; Zhang W; Gao B; Deng N; Qian H
    Neural Netw; 2018 Dec; 108():217-223. PubMed ID: 30216871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RRAM-based synapse devices for neuromorphic systems.
    Moon K; Lim S; Park J; Sung C; Oh S; Woo J; Lee J; Hwang H
    Faraday Discuss; 2019 Feb; 213(0):421-451. PubMed ID: 30426118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of Self-Aligned Selector Based on Ultra-Thin Metal Oxide for Resistive Random-Access Memory (RRAM) Crossbar Arrays.
    Fedotov M; Korotitsky V; Koveshnikov S
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Reliable 3D Channel Memory and Its Application in a Neuromorphic Sensory System for Hand Gesture Recognition.
    Kim D; Lee CB; Park KK; Bang H; Truong PL; Lee J; Jeong BH; Kim H; Won SM; Kim DH; Lee D; Ko JH; Baac HW; Kim K; Park HJ
    ACS Nano; 2023 Dec; 17(24):24826-24840. PubMed ID: 38060577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
    Guo Y; Wu H; Gao B; Qian H
    Front Neurosci; 2019; 13():812. PubMed ID: 31447634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
    Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H
    Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-bit multilevel operation with accurate programming scheme in TiO
    Kim TH; Lee J; Kim S; Park J; Park BG; Kim H
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33752189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rectifying Resistive Memory Devices as Dynamic Complementary Artificial Synapses.
    Berco D
    Front Neurosci; 2018; 12():755. PubMed ID: 30405338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-Moore Memory Technology: Sneak Path Current (SPC) Phenomena on RRAM Crossbar Array and Solutions.
    Chen YC; Lin CC; Chang YF
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sol-Gel-Processed Y
    Lee T; Kim HI; Cho Y; Lee S; Lee WY; Bae JH; Kang IM; Kim K; Lee SH; Jang J
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An On-Chip Trainable and the Clock-Less Spiking Neural Network With 1R Memristive Synapses.
    Shukla A; Ganguly U
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):884-893. PubMed ID: 29993721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new bipolar RRAM selector based on anti-parallel connected diodes for crossbar applications.
    Li Y; Gong Q; Li R; Jiang X
    Nanotechnology; 2014 May; 25(18):185201. PubMed ID: 24737150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphite-based selectorless RRAM: improvable intrinsic nonlinearity for array applications.
    Chen YC; Hu ST; Lin CY; Fowler B; Huang HC; Lin CC; Kim S; Chang YF; Lee JC
    Nanoscale; 2018 Aug; 10(33):15608-15614. PubMed ID: 30090909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition.
    Jiang Y; Kang J; Wang X
    Sci Rep; 2017 Mar; 7():45233. PubMed ID: 28338069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal crosstalk in 3-dimensional RRAM crossbar array.
    Sun P; Lu N; Li L; Li Y; Wang H; Lv H; Liu Q; Long S; Liu S; Liu M
    Sci Rep; 2015 Aug; 5():13504. PubMed ID: 26310537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.