These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32678140)

  • 1. Mapping the local viscosity of non-Newtonian fluids flowing through disordered porous structures.
    Eberhard U; Seybold HJ; Secchi E; Jiménez-Martínez J; Rühs PA; Ofner A; Andrade JS; Holzner M
    Sci Rep; 2020 Jul; 10(1):11733. PubMed ID: 32678140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling cross model non-Newtonian fluid flow in porous media.
    Hauswirth SC; Bowers CA; Fowler CP; Schultz PB; Hauswirth AD; Weigand T; Miller CT
    J Contam Hydrol; 2020 Nov; 235():103708. PubMed ID: 32896762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pore network modelling approach to investigate the interplay between local and Darcy viscosities during the flow of shear-thinning fluids in porous media.
    Rodríguez de Castro A; Goyeau B
    J Colloid Interface Sci; 2021 May; 590():446-457. PubMed ID: 33561594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.
    Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling.
    Salmo IC; Sorbie KS; Skauge A
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilute Polymer Droplets Show Generalized Wetting Dynamics via an Average Viscosity.
    Azimi Yancheshme A; Yoon H; Palmese GR; Alvarez NJ
    ACS Appl Polym Mater; 2024 Oct; 6(19):11997-12006. PubMed ID: 39416718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Response of Newtonian and Non-Newtonian Fluids Subjected to Exothermic Reactions in Shear Flow.
    Chinyoka T
    Int J Appl Comput Math; 2021; 7(3):75. PubMed ID: 33937441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.
    Low KW; van Loon R; Rolland SA; Sienz J
    J Biomech Eng; 2016 May; 138(5):051001. PubMed ID: 26902524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-newtonian fluid flow through three-dimensional disordered porous media.
    Morais AF; Seybold H; Herrmann HJ; Andrade JS
    Phys Rev Lett; 2009 Nov; 103(19):194502. PubMed ID: 20365926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the tracer velocity of a fluid continuum equal to its mass velocity?
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061201. PubMed ID: 15697343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-Scale Modeling of the Effect of Wettability on Two-Phase Flow Properties for Newtonian and Non-Newtonian Fluids.
    Tembely M; Alameri WS; AlSumaiti AM; Jouini MS
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Capillary Circuits for Calibration-Free Viscosity Measurement of Newtonian and Non-Newtonian Fluids.
    Oh S; Choi S
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
    Chen S; He X; Bertola V; Wang M
    J Colloid Interface Sci; 2014 Dec; 436():186-93. PubMed ID: 25278358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle dispersion in disordered porous media with and without polymer additives.
    Babayekhorasani F; Dunstan DE; Krishnamoorti R; Conrad JC
    Soft Matter; 2016 Jun; 12(26):5676-83. PubMed ID: 27328208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical-mechanical theory of rheology: Lennard-Jones fluids.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle transport within non-Newtonian fluid flow in porous media.
    Shende T; Mangal D; Conrad JC; Niasar V; Babaei M
    Phys Rev E; 2022 Jul; 106(1-2):015103. PubMed ID: 35974600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.