BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32678207)

  • 21. Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco.
    Hayashi S; Watanabe M; Kobayashi M; Tohge T; Hashimoto T; Shoji T
    Plant Cell Physiol; 2020 Jun; 61(6):1041-1053. PubMed ID: 32191315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and differential regulation of microRNAs in response to methyl jasmonate treatment in Lycoris aurea by deep sequencing.
    Xu S; Jiang Y; Wang N; Xia B; Jiang Y; Li X; Zhang Z; Li Y; Wang R
    BMC Genomics; 2016 Oct; 17(1):789. PubMed ID: 27724902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screening and identification of miRNAs related to sexual differentiation of strobili in Ginkgo biloba by integration analysis of small RNA, RNA, and degradome sequencing.
    Liu XM; Cheng SY; Ye JB; Chen ZX; Liao YL; Zhang WW; Kim SU; Xu F
    BMC Plant Biol; 2020 Aug; 20(1):387. PubMed ID: 32842951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize.
    Zhang X; Xie S; Han J; Zhou Y; Liu C; Zhou Z; Wang F; Cheng Z; Zhang J; Hu Y; Hao Z; Li M; Zhang D; Yong H; Huang Y; Weng J; Li X
    BMC Genomics; 2019 Jul; 20(1):574. PubMed ID: 31296166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco.
    Shoji T; Hashimoto T
    Plant J; 2011 Sep; 67(6):949-59. PubMed ID: 21605206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the MiR156, MiR5488 and MiR399 are Involved in the Regulation of Male Sterility in PTGMS Rice.
    Sun Y; Xiong X; Wang Q; Zhu L; Wang L; He Y; Zeng H
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic Insights into the Evolution of the Nicotine Biosynthesis Pathway in Tobacco.
    Kajikawa M; Sierro N; Kawaguchi H; Bakaher N; Ivanov NV; Hashimoto T; Shoji T
    Plant Physiol; 2017 Jun; 174(2):999-1011. PubMed ID: 28584068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes.
    Shoji T; Ogawa T; Hashimoto T
    Plant Cell Physiol; 2008 Jul; 49(7):1003-12. PubMed ID: 18492687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum.
    An W; Gong W; He S; Pan Z; Sun J; Du X
    BMC Genomics; 2015 Oct; 16():886. PubMed ID: 26517985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive analysis of differential genes and miRNA profiles for discovery of topping-responsive genes in flue-cured tobacco roots.
    Qi Y; Guo H; Li K; Liu W
    FEBS J; 2012 Mar; 279(6):1054-70. PubMed ID: 22251798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NtMYB305a binds to the jasmonate-responsive GAG region of NtPMT1a promoter to regulate nicotine biosynthesis.
    Bian S; Sui X; Wang J; Tian T; Wang C; Zhao X; Liu X; Fang N; Zhang Y; Liu Y; Du Y; Wang B; Timko MP; Zhang Z; Zhang H
    Plant Physiol; 2022 Jan; 188(1):151-166. PubMed ID: 34601578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterisation of tobacco microRNA transcriptome using high-throughput sequencing.
    Gao J; Yin F; Liu M; Luo M; Qin C; Yang A; Yang S; Zhang Z; Shen Y; Lin H; Pan G
    Plant Biol (Stuttg); 2015 May; 17(3):591-8. PubMed ID: 25287651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome-wide identification of miRNA targets and a TAS3-homologous gene in Populus by degradome sequencing.
    Bao H; Chen M; Chen H; Du L; Wang Y
    Genes Genomics; 2019 Jul; 41(7):849-861. PubMed ID: 30912003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33096606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation.
    Han X; Yin H; Song X; Zhang Y; Liu M; Sang J; Jiang J; Li J; Zhuo R
    Plant Biotechnol J; 2016 Jun; 14(6):1470-83. PubMed ID: 26801211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated analysis of smRNAome, transcriptome, and degradome data to decipher microRNAs regulating costunolide biosynthesis in Saussurea lappa.
    Kaur R; Pathania S; Kajal M; Thakur V; Kaur J; Singh K
    Plant Sci; 2023 Jun; 331():111689. PubMed ID: 36965630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model for evolution and regulation of nicotine biosynthesis regulon in tobacco.
    Kajikawa M; Sierro N; Hashimoto T; Shoji T
    Plant Signal Behav; 2017 Jun; 12(6):e1338225. PubMed ID: 28613112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.