These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32678223)

  • 1. Assembly formation of minor dihydrosphingomyelin in sphingomyelin-rich ordered membrane domains.
    Kinoshita M; Kyo T; Matsumori N
    Sci Rep; 2020 Jul; 10(1):11794. PubMed ID: 32678223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coexistence of two liquid crystalline phases in dihydrosphingomyelin and dioleoylphosphatidylcholine binary mixtures.
    Kinoshita M; Matsumori N; Murata M
    Biochim Biophys Acta; 2014 May; 1838(5):1372-81. PubMed ID: 24468063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of sphingomyelin acyl chain heterogeneity upon properties of raft-like membranes.
    Hirano K; Kinoshita M; Matsumori N
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184036. PubMed ID: 36055359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emphatic visualization of sphingomyelin-rich domains by inter-lipid FRET imaging using fluorescent sphingomyelins.
    Kinoshita M; Ano H; Murata M; Shigetomi K; Ikenouchi J; Matsumori N
    Sci Rep; 2017 Dec; 7(1):16801. PubMed ID: 29196620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane properties of D-erythro-N-acyl sphingomyelins and their corresponding dihydro species.
    Kuikka M; Ramstedt B; Ohvo-Rekilä H; Tuuf J; Slotte JP
    Biophys J; 2001 May; 80(5):2327-37. PubMed ID: 11325733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomyelin, or phosphatidylcholine.
    Nyholm TK; Nylund M; Slotte JP
    Biophys J; 2003 May; 84(5):3138-46. PubMed ID: 12719243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules.
    Nyholm T; Nylund M; Söderholm A; Slotte JP
    Biophys J; 2003 Feb; 84(2 Pt 1):987-97. PubMed ID: 12547780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.
    Ando J; Kinoshita M; Cui J; Yamakoshi H; Dodo K; Fujita K; Murata M; Sodeoka M
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4558-63. PubMed ID: 25825736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains.
    Yano Y; Hanashima S; Tsuchikawa H; Yasuda T; Slotte JP; London E; Murata M
    Biophys J; 2020 Aug; 119(3):539-552. PubMed ID: 32710823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y; Ohba T; Miyata H; Ohki K
    Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational studies of sphingolipids by NMR spectroscopy. II. Sphingomyelin.
    Talbott CM; Vorobyov I; Borchman D; Taylor KG; DuPré DB; Yappert MC
    Biochim Biophys Acta; 2000 Aug; 1467(2):326-37. PubMed ID: 11030591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers.
    Filippov A; Orädd G; Lindblom G
    Biophys J; 2006 Mar; 90(6):2086-92. PubMed ID: 16387761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-nervonoylsphingomyelin (C24:1) prevents lateral heterogeneity in cholesterol-containing membranes.
    Maté S; Busto JV; García-Arribas AB; Sot J; Vazquez R; Herlax V; Wolf C; Bakás L; Goñi FM
    Biophys J; 2014 Jun; 106(12):2606-16. PubMed ID: 24940778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
    St Clair JW; Kakuda S; London E
    Biophys J; 2020 Aug; 119(3):483-492. PubMed ID: 32710822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.