These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32678610)

  • 1. How Do Amphiphilic Biopolymers Gel Blood? An Investigation Using Optical Microscopy.
    MacIntire IC; Dowling MB; Raghavan SR
    Langmuir; 2020 Jul; 36(29):8357-8366. PubMed ID: 32678610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustering of Cyclodextrin-Functionalized Microbeads by an Amphiphilic Biopolymer: Real-Time Observation of Structures Resembling Blood Clots.
    Arya C; Saez Cabesas CA; Huang H; Raghavan SR
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37238-37245. PubMed ID: 28994570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action.
    Dowling MB; Kumar R; Keibler MA; Hess JR; Bochicchio GV; Raghavan SR
    Biomaterials; 2011 May; 32(13):3351-7. PubMed ID: 21296412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelation of vesicles and nanoparticles using water-soluble hydrophobically modified chitosan.
    Chen Y; Javvaji V; MacIntire IC; Raghavan SR
    Langmuir; 2013 Dec; 29(49):15302-8. PubMed ID: 24279281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicle--biopolymer gels: networks of surfactant vesicles connected by associating biopolymers.
    Lee JH; Gustin JP; Chen T; Payne GF; Raghavan SR
    Langmuir; 2005 Jan; 21(1):26-33. PubMed ID: 15620281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible gelation of cells using self-assembling hydrophobically-modified biopolymers: towards self-assembly of tissue.
    Javvaji V; Dowling MB; Oh H; White IM; Raghavan SR
    Biomater Sci; 2014 Jul; 2(7):1016-1023. PubMed ID: 32481975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biopolymer-connected liposome networks as injectable biomaterials capable of sustained local drug delivery.
    Lee JH; Oh H; Baxa U; Raghavan SR; Blumenthal R
    Biomacromolecules; 2012 Oct; 13(10):3388-94. PubMed ID: 22970880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprayable Foams Based on an Amphiphilic Biopolymer for Control of Hemorrhage Without Compression.
    Dowling MB; MacIntire IC; White JC; Narayan M; Duggan MJ; King DR; Raghavan SR
    ACS Biomater Sci Eng; 2015 Jun; 1(6):440-447. PubMed ID: 33445247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foams with Enhanced Rheology for Stopping Bleeding.
    Choudhary H; Rudy MB; Dowling MB; Raghavan SR
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13958-13967. PubMed ID: 33749251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition from unilamellar to bilamellar vesicles induced by an amphiphilic biopolymer.
    Lee JH; Agarwal V; Bose A; Payne GF; Raghavan SR
    Phys Rev Lett; 2006 Feb; 96(4):048102. PubMed ID: 16486898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative.
    Philippova OE; Volkov EV; Sitnikova NL; Khokhlov AR; Desbrieres J; Rinaudo M
    Biomacromolecules; 2001; 2(2):483-90. PubMed ID: 11749210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemostatic properties of in situ gels composed of hydrophobically modified biopolymers.
    Mizuta R; Taguchi T
    J Biomater Appl; 2018 Aug; 33(2):315-323. PubMed ID: 30096998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liposomes tethered to a biopolymer film through the hydrophobic effect create a highly effective lubricating surface.
    Zheng R; Arora J; Boonkaew B; Raghavan SR; Kaplan DL; He J; Pesika NS; John VT
    Soft Matter; 2014 Dec; 10(46):9226-9. PubMed ID: 25315119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli.
    Vo DT; Lee CK
    Carbohydr Polym; 2017 May; 164():109-117. PubMed ID: 28325306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation Study of Hydrophobically Modified Chitosan as an Oil Dispersant Additive.
    Benner SW; John VT; Hall CK
    J Phys Chem B; 2015 Jun; 119(23):6979-90. PubMed ID: 25973717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gels of hydrophobically modified ethyl(hydroxyethyl) cellulose cross-linked by amylose: effects of hydrophobe architecture.
    Egermayer M; Karlberg M; Piculell L
    Langmuir; 2004 Mar; 20(6):2208-14. PubMed ID: 15835672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs.
    Motiei M; Kashanian S
    Eur J Pharm Sci; 2017 Mar; 99():285-291. PubMed ID: 28057549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide.
    Hsiao MH; Larsson M; Larsson A; Evenbratt H; Chen YY; Chen YY; Liu DM
    J Control Release; 2012 Aug; 161(3):942-8. PubMed ID: 22652548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and rheological properties of hydrophobically modified polysaccharide associative networks.
    Esquenet C; Terech P; Boué F; Buhler E
    Langmuir; 2004 Apr; 20(9):3583-92. PubMed ID: 15875387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of N-alkylated chitosan and its interactions with blood.
    Huang Y; Zhang Y; Feng L; He L; Guo R; Xue W
    Artif Cells Nanomed Biotechnol; 2018 May; 46(3):544-550. PubMed ID: 28532176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.