BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32678617)

  • 1. Multipotent miRNA Sponge-Loaded Magnetic Nanodroplets with Ultrasound/Magnet-Assisted Delivery for Hepatocellular Carcinoma Therapy.
    Dong W; Wu P; Qin M; Guo S; Liu H; Yang X; He W; Bouakaz A; Wan M; Zong Y
    Mol Pharm; 2020 Aug; 17(8):2891-2910. PubMed ID: 32678617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-Mediated Gene Therapy of Hepatocellular Carcinoma Using Pre-microRNA Plasmid-Loaded Nanodroplets.
    Dong W; Wu P; Zhou D; Huang J; Qin M; Yang X; Wan M; Zong Y
    Ultrasound Med Biol; 2020 Jan; 46(1):90-107. PubMed ID: 31668943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-Assisted miR-122-Loaded Polymeric Nanodroplets for Hepatocellular Carcinoma Gene Therapy.
    Guo H; Xu M; Cao Z; Li W; Chen L; Xie X; Wang W; Liu J
    Mol Pharm; 2020 Feb; 17(2):541-553. PubMed ID: 31876426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivery of microRNA-21-sponge and pre-microRNA-122 by MS2 virus-like particles to therapeutically target hepatocellular carcinoma cells.
    Zhang J; Li D; Zhang R; Peng R; Li J
    Exp Biol Med (Maywood); 2021 Dec; 246(23):2463-2472. PubMed ID: 34644206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-guided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs.
    Mullick Chowdhury S; Wang TY; Bachawal S; Devulapally R; Choe JW; Abou Elkacem L; Yakub BK; Wang DS; Tian L; Paulmurugan R; Willmann JK
    J Control Release; 2016 Sep; 238():272-280. PubMed ID: 27503707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Tumor Suppressor MiR-34a Loaded on ZSM-5 Nanozeolite in Hepatocellular Carcinoma: In Vitro and In Vivo Approach.
    Salah Z; Abd El Azeem EM; Youssef HF; Gamal-Eldeen AM; Farrag AR; El-Meliegy E; Soliman B; Elhefnawi M
    Curr Gene Ther; 2019; 19(5):342-354. PubMed ID: 31701846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polo-like Kinase 1-targeting Chitosan Nanoparticles Suppress the Progression of Hepatocellular Carcinoma.
    Wang D; Chang R; Wang G; Hu B; Qiang Y; Chen Z
    Anticancer Agents Med Chem; 2017; 17(7):948-954. PubMed ID: 27671301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LncRNA DBH-AS1 facilitates the tumorigenesis of hepatocellular carcinoma by targeting miR-138 via FAK/Src/ERK pathway.
    Bao J; Chen X; Hou Y; Kang G; Li Q; Xu Y
    Biomed Pharmacother; 2018 Nov; 107():824-833. PubMed ID: 30142544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth.
    Xu L; Feng X; Hao X; Wang P; Zhang Y; Zheng X; Li L; Ren S; Zhang M; Xu M
    J Exp Clin Cancer Res; 2019 Feb; 38(1):98. PubMed ID: 30795787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular RNA circ-FOXP1 induced by SOX9 promotes hepatocellular carcinoma progression via sponging miR-875-3p and miR-421.
    Wang W; Li Y; Li X; Liu B; Han S; Li X; Zhang B; Li J; Sun S
    Biomed Pharmacother; 2020 Jan; 121():109517. PubMed ID: 31698267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LncRNA TUG1 interacting with miR-144 contributes to proliferation, migration and tumorigenesis through activating the JAK2/STAT3 pathway in hepatocellular carcinoma.
    Lv J; Kong Y; Gao Z; Liu Y; Zhu P; Yu Z
    Int J Biochem Cell Biol; 2018 Aug; 101():19-28. PubMed ID: 29791864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiR-3174 promotes proliferation and inhibits apoptosis by targeting FOXO1 in hepatocellular carcinoma.
    Wang Q; Yang X; Zhou X; Wu B; Zhu D; Jia W; Chu J; Wang J; Wu J; Kong L
    Biochem Biophys Res Commun; 2020 Jun; 526(4):889-897. PubMed ID: 32279994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulated in Hepatitis B virus-associated hepatocellular carcinoma cells, miR-331-3p promotes proliferation of hepatocellular carcinoma cells by targeting ING5.
    Cao Y; Chen J; Wang D; Peng H; Tan X; Xiong D; Huang A; Tang H
    Oncotarget; 2015 Nov; 6(35):38093-106. PubMed ID: 26497554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circ_0015756 promotes proliferation, invasion and migration by microRNA-7-dependent inhibition of FAK in hepatocellular carcinoma.
    Liu L; Yang X; Li NF; Lin L; Luo H
    Cell Cycle; 2019 Nov; 18(21):2939-2953. PubMed ID: 31522588
    [No Abstract]   [Full Text] [Related]  

  • 15. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway.
    Fu X; Wen H; Jing L; Yang Y; Wang W; Liang X; Nan K; Yao Y; Tian T
    Cancer Sci; 2017 Apr; 108(4):620-631. PubMed ID: 28132399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1.
    Tu J; Zhao Z; Xu M; Chen M; Weng Q; Ji J
    Biomed Pharmacother; 2019 Oct; 118():109213. PubMed ID: 31376654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL.
    Chen L; Guan H; Gu C; Cao Y; Shao J; Wang F
    Tumour Biol; 2016 Feb; 37(2):2497-507. PubMed ID: 26385772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-301b-3p contributes to tumour growth of human hepatocellular carcinoma by repressing vestigial like family member 4.
    Guo Y; Yao B; Zhu Q; Xiao Z; Hu L; Liu X; Li L; Wang J; Xu Q; Yang L; Huang D
    J Cell Mol Med; 2019 Aug; 23(8):5037-5047. PubMed ID: 31207037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmid-loadable magnetic/ultrasound-responsive nanodroplets with a SPIO-NP dispersed perfluoropentane core and lipid shell for tumor-targeted intracellular plasmid delivery.
    Dong W; Huang A; Huang J; Wu P; Guo S; Liu H; Qin M; Yang X; Zhang B; Wan M; Zong Y
    Biomater Sci; 2020 Oct; 8(19):5329-5345. PubMed ID: 32793943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-493 suppresses hepatocellular carcinoma tumorigenesis through down-regulation of anthrax toxin receptor 1 (ANTXR1) and R-Spondin 2 (RSPO2).
    Xu Y; Ge K; Lu J; Huang J; Wei W; Huang Q
    Biomed Pharmacother; 2017 Sep; 93():334-343. PubMed ID: 28651234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.