These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32678792)

  • 1. The effect of aircraft seat pitch on comfort.
    Anjani S; Li W; Ruiter IA; Vink P
    Appl Ergon; 2020 Oct; 88():103132. PubMed ID: 32678792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seat pitch and comfort of a staggered seat configuration.
    Liu Z; Rotte T; Anjani S; Vink P
    Work; 2021; 68(s1):S151-S159. PubMed ID: 33337416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing a floor plan using aircraft seat comfort knowledge by aircraft interior experts.
    Anjani S; Song Y; Vink P
    Work; 2021; 68(s1):S7-S18. PubMed ID: 33337403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aircraft seating comfort: the influence of seat pitch on passengers' well-being.
    Kremser F; Guenzkofer F; Sedlmeier C; Sabbah O; Bengler K
    Work; 2012; 41 Suppl 1():4936-42. PubMed ID: 22317483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting passenger seat comfort and discomfort on the basis of human, context and seat characteristics: a literature review.
    Hiemstra-van Mastrigt S; Groenesteijn L; Vink P; Kuijt-Evers LFM
    Ergonomics; 2017 Jul; 60(7):889-911. PubMed ID: 27633349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aircraft Passenger Comfort Based on Muscle Activation and Perceived Discomfort During Long Flights.
    Pei H; Yu S; Ding M; Bai Z
    Aerosp Med Hum Perform; 2020 May; 91(5):416-421. PubMed ID: 32327015
    [No Abstract]   [Full Text] [Related]  

  • 7. Design and analysis of comparative experiments to assess the (dis-)comfort of aircraft seating.
    Vanacore A; Lanzotti A; Percuoco C; Capasso A; Vitolo B
    Appl Ergon; 2019 Apr; 76():155-163. PubMed ID: 30642520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method identifying key optimisation points for aircraft seat comfort.
    Wang J; Zhi JY; Du Y; Xiang ZR; Feng S; Chen JP
    Ergonomics; 2021 Mar; 64(3):287-304. PubMed ID: 33026947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring pressure distribution under the seat cushion and dividing the pressure map in six regions might be beneficial for comfort studies of aircraft seats.
    Yao X; He Y; Udomboonyanupap S; Hessenberger N; Song Y; Vink P
    Ergonomics; 2023 Oct; 66(10):1594-1607. PubMed ID: 36524386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of in-seat exercising on comfort perception of airplane passengers.
    Bouwens JMA; Fasulo L; Hiemstra-van Mastrigt S; Schultheis UW; Naddeo A; Vink P
    Appl Ergon; 2018 Nov; 73():7-12. PubMed ID: 30098644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective and subjective evaluation of a new airplane seat with an optimally pre-shaped foam support.
    Wang X; Beurier G; Zhao M; Obadia JM
    Work; 2021; 68(s1):S257-S271. PubMed ID: 33337426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric investigation on seat/occupant contact forces and their relationship with initially perceived discomfort using a configurable seat.
    Wang X; Cardoso M; Theodorakos I; Beurier G
    Ergonomics; 2019 Jul; 62(7):891-902. PubMed ID: 30912482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards comfortable communication in future vehicles.
    Piro S; Fiorillo I; Anjani S; Smulders M; Naddeo A; Vink P
    Appl Ergon; 2019 Jul; 78():210-216. PubMed ID: 31046952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementing spring-foam technology to design a lightweight and comfortable aircraft seat-pan.
    Dangal S; Smulders M; Vink P
    Appl Ergon; 2021 Feb; 91():103174. PubMed ID: 33128932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of seat parameters and sitters' anthropometric dimensions on seat profile and optimal compressed seat pan surface.
    Wang X; Cardoso M; Beurier G
    Appl Ergon; 2018 Nov; 73():13-21. PubMed ID: 30098628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Development of the Self Shape Adjustment Cushion Mechanism for Improving Sitting Comfort.
    Choi S; Kim H; Kim H; Yang W
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comfort and pressure distribution in a human contour shaped aircraft seat (developed with 3D scans of the human body).
    Smulders M; Berghman K; Koenraads M; Kane JA; Krishna K; Carter TK; Schultheis U
    Work; 2016 Aug; 54(4):925-40. PubMed ID: 27567786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of airplane passenger seat armrest height on human neck comfort when using a smartphone.
    Tang X; Yu S; Chu J; Zhang L; Fan H; Hu Y; Jiang G
    Int J Occup Med Environ Health; 2022 Apr; 35(2):199-208. PubMed ID: 34658367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the design of a lightweight, sustainable and comfortable aircraft seat.
    Kokorikou A; Vink P; de Pauw IC; Braca A
    Work; 2016 Jul; 54(4):941-54. PubMed ID: 27447414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining optimum seat depth using comfort and discomfort assessments.
    Bahrampour S; Nazari J; Dianat I; Asghari Jafarabadi M; Bazazan A
    Int J Occup Saf Ergon; 2020 Sep; 26(3):429-435. PubMed ID: 30488786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.