These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32678992)
1. Approaches for Systemic Delivery of Dystrophin Antisense Peptide Nucleic Acid in the mdx Mouse Model. Brolin C; Lim EWK; Grizot S; Olsen CH; Yavari N; Krag TO; Nielsen PE Nucleic Acid Ther; 2021 Jun; 31(3):208-219. PubMed ID: 32678992 [TBL] [Abstract][Full Text] [Related]
2. Optimization of peptide nucleic acid antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse. Yin H; Betts C; Saleh AF; Ivanova GD; Lee H; Seow Y; Kim D; Gait MJ; Wood MJ Mol Ther; 2010 Apr; 18(4):819-27. PubMed ID: 20068555 [TBL] [Abstract][Full Text] [Related]
3. Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Yin H; Lu Q; Wood M Mol Ther; 2008 Jan; 16(1):38-45. PubMed ID: 17968354 [TBL] [Abstract][Full Text] [Related]
4. Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice. Jirka SM; Heemskerk H; Tanganyika-de Winter CL; Muilwijk D; Pang KH; de Visser PC; Janson A; Karnaoukh TG; Vermue R; 't Hoen PA; van Deutekom JC; Aguilera B; Aartsma-Rus A Nucleic Acid Ther; 2014 Feb; 24(1):25-36. PubMed ID: 24320790 [TBL] [Abstract][Full Text] [Related]
5. In Vivo Administration of Splice Switching PNAs Using the mdx Mouse as a Model System. Brolin C; Lim EWK; Nielsen PE Methods Mol Biol; 2020; 2105():241-250. PubMed ID: 32088875 [TBL] [Abstract][Full Text] [Related]
6. Nonclinical Exon Skipping Studies with 2'-O-Methyl Phosphorothioate Antisense Oligonucleotides in mdx and mdx-utrn-/- Mice Inspired by Clinical Trial Results. van Putten M; Tanganyika-de Winter C; Bosgra S; Aartsma-Rus A Nucleic Acid Ther; 2019 Apr; 29(2):92-103. PubMed ID: 30672725 [TBL] [Abstract][Full Text] [Related]
7. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. Fletcher S; Honeyman K; Fall AM; Harding PL; Johnsen RD; Wilton SD J Gene Med; 2006 Feb; 8(2):207-16. PubMed ID: 16285002 [TBL] [Abstract][Full Text] [Related]
9. Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. Jirka SMG; 't Hoen PAC; Diaz Parillas V; Tanganyika-de Winter CL; Verheul RC; Aguilera B; de Visser PC; Aartsma-Rus AM Mol Ther; 2018 Jan; 26(1):132-147. PubMed ID: 29103911 [TBL] [Abstract][Full Text] [Related]
10. Antisense Oligonucleotide Treatment in a Humanized Mouse Model of Duchenne Muscular Dystrophy and Highly Sensitive Detection of Dystrophin Using Western Blotting. Maruyama R; Yokota T Methods Mol Biol; 2021; 2224():203-214. PubMed ID: 33606217 [TBL] [Abstract][Full Text] [Related]
11. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Echigoya Y; Yokota T Nucleic Acid Ther; 2014 Feb; 24(1):57-68. PubMed ID: 24380394 [TBL] [Abstract][Full Text] [Related]
12. The Use of Antisense Oligonucleotides for the Treatment of Duchenne Muscular Dystrophy. Relizani K; Goyenvalle A Methods Mol Biol; 2018; 1687():171-183. PubMed ID: 29067663 [TBL] [Abstract][Full Text] [Related]
13. Use of Small Animal Models for Duchenne and Parameters to Assess Efficiency upon Antisense Treatment. Lu-Nguyen N; Malerba A; Popplewell L Methods Mol Biol; 2022; 2434():301-313. PubMed ID: 35213026 [TBL] [Abstract][Full Text] [Related]
14. Intraperitoneal administration of phosphorothioate antisense oligodeoxynucleotide against splicing enhancer sequence induced exon skipping in dystrophin mRNA expressed in mdx skeletal muscle. Takeshima Y; Yagi M; Wada H; Matsuo M Brain Dev; 2005 Oct; 27(7):488-93. PubMed ID: 16198206 [TBL] [Abstract][Full Text] [Related]
15. Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Ivanova GD; Arzumanov A; Abes R; Yin H; Wood MJ; Lebleu B; Gait MJ Nucleic Acids Res; 2008 Nov; 36(20):6418-28. PubMed ID: 18842625 [TBL] [Abstract][Full Text] [Related]
16. Exon 51 Skipping Quantification by Digital Droplet PCR in del52hDMD/mdx Mice. Hiller M; Spitali P; Datson N; Aartsma-Rus A Methods Mol Biol; 2018; 1828():249-262. PubMed ID: 30171546 [TBL] [Abstract][Full Text] [Related]
17. Systemic Intravenous Administration of Antisense Therapeutics for Combinatorial Dystrophin and Myostatin Exon Splice Modulation. Lu-Nguyen N; Dickson G; Malerba A Methods Mol Biol; 2018; 1828():343-354. PubMed ID: 30171552 [TBL] [Abstract][Full Text] [Related]
18. Peptide Nucleic Acid Promotes Systemic Dystrophin Expression and Functional Rescue in Dystrophin-deficient mdx Mice. Gao X; Shen X; Dong X; Ran N; Han G; Cao L; Gu B; Yin H Mol Ther Nucleic Acids; 2015 Oct; 4(10):e255. PubMed ID: 26440599 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the Impact of Variable Phosphorothioate Content in Tricyclo-DNA Antisense Oligonucleotides in a Duchenne Muscular Dystrophy Mouse Model. EchevarrÃa L; Aupy P; Relizani K; Bestetti T; Griffith G; Blandel F; Komisarski M; Haeberli A; Svinartchouk F; Garcia L; Goyenvalle A Nucleic Acid Ther; 2019 Jun; 29(3):148-160. PubMed ID: 31009315 [TBL] [Abstract][Full Text] [Related]
20. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays. Graham IR; Hill VJ; Manoharan M; Inamati GB; Dickson G J Gene Med; 2004 Oct; 6(10):1149-58. PubMed ID: 15386737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]