BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 32679108)

  • 21. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance.
    Ottman R; Nguyen C; Lorch R; Chakrabarti R
    Mol Cancer; 2014 Jan; 13():1. PubMed ID: 24387052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel neuregulin - jagged1 paracrine loop in breast cancer transendothelial migration.
    Cabrera RM; Mao SPH; Surve CR; Condeelis JS; Segall JE
    Breast Cancer Res; 2018 Apr; 20(1):24. PubMed ID: 29636067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HER3 is required for the maintenance of neuregulin-dependent and -independent attributes of malignant progression in prostate cancer cells.
    Soler M; Mancini F; Meca-Cortés O; Sánchez-Cid L; Rubio N; López-Fernández S; Lozano JJ; Blanco J; Fernández PL; Thomson TM
    Int J Cancer; 2009 Dec; 125(11):2565-75. PubMed ID: 19530240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Broadening Drug Design and Targets to Tumor Microenvironment? Cancer-Associated Fibroblast Marker Expression in Cancers and Relevance for Survival Outcomes.
    Dzobo K; Dandara C
    OMICS; 2020 Jun; 24(6):340-351. PubMed ID: 32496971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steroid Sulfatase Stimulates Intracrine Androgen Synthesis and is a Therapeutic Target for Advanced Prostate Cancer.
    Armstrong CM; Liu C; Liu L; Yang JC; Lou W; Zhao R; Ning S; Lombard AP; Zhao J; D'Abronzo LS; Evans CP; Li PK; Gao AC
    Clin Cancer Res; 2020 Nov; 26(22):6064-6074. PubMed ID: 32928794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a second-generation antiandrogen for treatment of advanced prostate cancer.
    Tran C; Ouk S; Clegg NJ; Chen Y; Watson PA; Arora V; Wongvipat J; Smith-Jones PM; Yoo D; Kwon A; Wasielewska T; Welsbie D; Chen CD; Higano CS; Beer TM; Hung DT; Scher HI; Jung ME; Sawyers CL
    Science; 2009 May; 324(5928):787-90. PubMed ID: 19359544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells.
    Xu M; Sakamoto S; Matsushima J; Kimura T; Ueda T; Mizokami A; Kanai Y; Ichikawa T
    J Urol; 2016 May; 195(5):1588-1597. PubMed ID: 26682754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.
    Kregel S; Kiriluk KJ; Rosen AM; Cai Y; Reyes EE; Otto KB; Tom W; Paner GP; Szmulewitz RZ; Vander Griend DJ
    PLoS One; 2013; 8(1):e53701. PubMed ID: 23326489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuregulin 1 Allosterically Enhances the Antitumor Effects of the Noncompeting Anti-HER3 Antibody 9F7-F11 by Increasing Its Binding to HER3.
    Le Clorennec C; Bazin H; Dubreuil O; Larbouret C; Ogier C; Lazrek Y; Garambois V; Poul MA; Mondon P; Barret JM; Mathis G; Prost JF; Pèlegrin A; Chardès T
    Mol Cancer Ther; 2017 Jul; 16(7):1312-1323. PubMed ID: 28507002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine.
    Kanzaki R; Pietras K
    Cancer Sci; 2020 Aug; 111(8):2708-2717. PubMed ID: 32573845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation.
    Zhang Z; Zhou C; Li X; Barnes SD; Deng S; Hoover E; Chen CC; Lee YS; Zhang Y; Wang C; Metang LA; Wu C; Tirado CR; Johnson NA; Wongvipat J; Navrazhina K; Cao Z; Choi D; Huang CH; Linton E; Chen X; Liang Y; Mason CE; de Stanchina E; Abida W; Lujambio A; Li S; Lowe SW; Mendell JT; Malladi VS; Sawyers CL; Mu P
    Cancer Cell; 2020 Apr; 37(4):584-598.e11. PubMed ID: 32220301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuregulin 1 expression is a predictive biomarker for response to AV-203, an ERBB3 inhibitory antibody, in human tumor models.
    Meetze K; Vincent S; Tyler S; Mazsa EK; Delpero AR; Bottega S; McIntosh D; Nicoletti R; Winston WM; Weiler S; Feng B; Gyuris J; Weng Z
    Clin Cancer Res; 2015 Mar; 21(5):1106-14. PubMed ID: 25542901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased expression of activated endothelial nitric oxide synthase contributes to antiandrogen resistance in prostate cancer cells by suppressing androgen receptor transactivation.
    Yu S; Jia L; Zhang Y; Wu D; Xu Z; Ng CF; To KK; Huang Y; Chan FL
    Cancer Lett; 2013 Jan; 328(1):83-94. PubMed ID: 22995070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical Study using Malat1 Small Interfering RNA or Androgen Receptor Splicing Variant 7 Degradation Enhancer ASC-J9
    Wang R; Sun Y; Li L; Niu Y; Lin W; Lin C; Antonarakis ES; Luo J; Yeh S; Chang C
    Eur Urol; 2017 Nov; 72(5):835-844. PubMed ID: 28528814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wnt Inhibition Sensitizes PD-L1 Blockade Therapy by Overcoming Bone Marrow-Derived Myofibroblasts-Mediated Immune Resistance in Tumors.
    Huang T; Li F; Cheng X; Wang J; Zhang W; Zhang B; Tang Y; Li Q; Zhou C; Tu S
    Front Immunol; 2021; 12():619209. PubMed ID: 33790893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fibroblast-derived neuregulin 1 promotes compensatory ErbB3 receptor signaling in mutant BRAF melanoma.
    Capparelli C; Rosenbaum S; Berger AC; Aplin AE
    J Biol Chem; 2015 Oct; 290(40):24267-77. PubMed ID: 26269601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level.
    Karantanos T; Evans CP; Tombal B; Thompson TC; Montironi R; Isaacs WB
    Eur Urol; 2015 Mar; 67(3):470-9. PubMed ID: 25306226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone Microenvironment Changes in Latexin Expression Promote Chemoresistance.
    Zhang M; Osisami M; Dai J; Keller JM; Escara-Wilke J; Mizokami A; Keller ET
    Mol Cancer Res; 2017 Apr; 15(4):457-466. PubMed ID: 28087740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase.
    Lin Y; Cai Q; Chen Y; Shi T; Liu W; Mao L; Deng B; Ying Z; Gao Y; Luo H; Yang X; Huang X; Shi Y; He R
    Hepatology; 2022 Jan; 75(1):28-42. PubMed ID: 34387870
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Blee AM; He Y; Yang Y; Ye Z; Yan Y; Pan Y; Ma T; Dugdale J; Kuehn E; Kohli M; Jimenez R; Chen Y; Xu W; Wang L; Huang H
    Clin Cancer Res; 2018 Sep; 24(18):4551-4565. PubMed ID: 29844131
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.