These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32679338)

  • 1. Effect of soil type on heavy metals removal in bioelectrochemical system.
    Zhang J; Liu Y; Sun Y; Wang H; Cao X; Li X
    Bioelectrochemistry; 2020 Dec; 136():107596. PubMed ID: 32679338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell.
    Zhang J; Cao X; Wang H; Long X; Li X
    Ecotoxicol Environ Saf; 2020 Apr; 192():110314. PubMed ID: 32061983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell.
    Wang H; Long X; Zhang J; Cao X; Liu S; Li X
    Chemosphere; 2020 Feb; 241():125097. PubMed ID: 31629235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrochemical removal of tetracycline from four typical soils in China: A performance assessment.
    Zhao X; Li X; Zhang X; Li Y; Weng L; Ren T; Li Y
    Bioelectrochemistry; 2019 Oct; 129():26-33. PubMed ID: 31100650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of microbial fuel cell technology to the remediation of compound heavy metal contamination in soil.
    Zhang J; Jiao W; Huang S; Wang H; Cao X; Li X; Sakamaki T
    J Environ Manage; 2022 Oct; 320():115670. PubMed ID: 35921747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New process for copper migration by bioelectricity generation in soil microbial fuel cells.
    Wang H; Song H; Yu R; Cao X; Fang Z; Li X
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13147-54. PubMed ID: 27005277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous copper migration and removal from soil and water using a three-chamber microbial fuel cell.
    Zhang J; Wang H; Zhou X; Cao X; Li X
    Environ Technol; 2021 Dec; 42(28):4519-4527. PubMed ID: 32404026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.
    Yang X; Liu J; McGrouther K; Huang H; Lu K; Guo X; He L; Lin X; Che L; Ye Z; Wang H
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):974-84. PubMed ID: 25772863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms and challenges of microbial fuel cells for soil heavy metal(loid)s remediation.
    Gustave W; Yuan Z; Liu F; Chen Z
    Sci Total Environ; 2021 Feb; 756():143865. PubMed ID: 33293085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracting reagents and metal speciation on the removal of heavy metal contaminated soils by chemical extraction.
    Lee CS; Kao MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(5):1233-49. PubMed ID: 15137694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.
    Figueroa A; Cameselle C; Gouveia S; Hansen HK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(9):691-700. PubMed ID: 27127923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of different soil types on the remediation of copper-pyrene compound contaminated soils by EK-oxidation process].
    Fan GP; Cang L; Zhou DM; Zhou LX
    Huan Jing Ke Xue; 2011 Nov; 32(11):3435-9. PubMed ID: 22295647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of several leaching reagents on removal of Cu, Pb, Cd, and Zn from highly contaminated paddy soil.
    Gao R; Zhu P; Guo G; Hu H; Zhu J; Fu Q
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):23271-23280. PubMed ID: 27638790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.
    Habibul N; Hu Y; Sheng GP
    J Hazard Mater; 2016 Nov; 318():9-14. PubMed ID: 27388419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils.
    Huang Q; Yu Z; Pang Y; Wang Y; Cai Z
    Bull Environ Contam Toxicol; 2015 Apr; 94(4):519-24. PubMed ID: 25680933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms.
    Wang H; Cao X; Li L; Fang Z; Li X
    Ecotoxicol Environ Saf; 2018 Jan; 147():735-741. PubMed ID: 28942276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations.
    Uchimiya M; Klasson KT; Wartelle LH; Lima IM
    Chemosphere; 2011 Mar; 82(10):1431-7. PubMed ID: 21147495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.
    Wang X; Li J; Wang Z; Tursun H; Liu R; Gao Y; Li Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20368-20377. PubMed ID: 27449020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.