BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32679598)

  • 21. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
    Theilen NT; Kunkel GH; Tyagi SC
    J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of calpains in Ca2+-induced disruption of excitation-contraction coupling in mammalian skeletal muscle fibers.
    Verburg E; Murphy RM; Richard I; Lamb GD
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1115-22. PubMed ID: 19295178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation and physiological roles of the calpain system in muscular disorders.
    Sorimachi H; Ono Y
    Cardiovasc Res; 2012 Oct; 96(1):11-22. PubMed ID: 22542715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial Apoptotic Signaling Involvement in Remodeling During Myogenesis and Skeletal Muscle Atrophy.
    Rahman FA; Quadrilatero J
    Semin Cell Dev Biol; 2023 Jul; 143():66-74. PubMed ID: 35241367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Possible functions of p94 in connectin-mediated signaling pathways in skeletal muscle cells.
    Ojima K; Ono Y; Hata S; Koyama S; Doi N; Sorimachi H
    J Muscle Res Cell Motil; 2005; 26(6-8):409-17. PubMed ID: 16453164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lifelong physical exercise delays age-associated skeletal muscle decline.
    Zampieri S; Pietrangelo L; Loefler S; Fruhmann H; Vogelauer M; Burggraf S; Pond A; Grim-Stieger M; Cvecka J; Sedliak M; Tirpáková V; Mayr W; Sarabon N; Rossini K; Barberi L; De Rossi M; Romanello V; Boncompagni S; Musarò A; Sandri M; Protasi F; Carraro U; Kern H
    J Gerontol A Biol Sci Med Sci; 2015 Feb; 70(2):163-73. PubMed ID: 24550352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca(2+)-dependent proteolysis in muscle wasting.
    Costelli P; Reffo P; Penna F; Autelli R; Bonelli G; Baccino FM
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2134-46. PubMed ID: 15893952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy.
    Talbert EE; Smuder AJ; Min K; Kwon OS; Powers SK
    J Appl Physiol (1985); 2013 May; 114(10):1482-9. PubMed ID: 23471945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calpain-dependent regulation of the skeletal muscle atrophy following unloading.
    Shenkman BS; Belova SP; Lomonosova YN; Kostrominova TY; Nemirovskaya TL
    Arch Biochem Biophys; 2015 Oct; 584():36-41. PubMed ID: 26297661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calpains, skeletal muscle function and exercise.
    Murphy RM
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):385-91. PubMed ID: 19793101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.
    Cunha TF; Bechara LR; Bacurau AV; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2017 Apr; 122(4):817-827. PubMed ID: 28104751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy.
    Kramerova I; Torres JA; Eskin A; Nelson SF; Spencer MJ
    Hum Mol Genet; 2018 May; 27(9):1642-1653. PubMed ID: 29528394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of calpains-1 and -2 prevents repair of plasma membrane scrape injuries, but not small pores, and induces a severe muscular dystrophy.
    Piper AK; Sophocleous RA; Ross SE; Evesson FJ; Saleh O; Bournazos A; Yasa J; Reed C; Woolger N; Sluyter R; Greer P; Biro M; Lemckert FA; Cooper ST
    Am J Physiol Cell Physiol; 2020 Jun; 318(6):C1226-C1237. PubMed ID: 32348180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calpain activity in fast, slow, transforming, and regenerating skeletal muscles of rat.
    Sultan KR; Dittrich BT; Pette D
    Am J Physiol Cell Physiol; 2000 Sep; 279(3):C639-47. PubMed ID: 10942714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration.
    Joyce PI; Satija R; Chen M; Kuwabara PE
    PLoS Genet; 2012; 8(3):e1002602. PubMed ID: 22479198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.
    Hyatt H; Deminice R; Yoshihara T; Powers SK
    Arch Biochem Biophys; 2019 Feb; 662():49-60. PubMed ID: 30452895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains.
    Chaudhary P; Suryakumar G; Prasad R; Singh SN; Ali S; Ilavazhagan G
    Mol Cell Biochem; 2012 May; 364(1-2):101-13. PubMed ID: 22215202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calpain 1-gamma filamin interaction in muscle cells: a possible in situ regulation by PKC-alpha.
    Raynaud F; Jond-Necand C; Marcilhac A; Fürst D; Benyamin Y
    Int J Biochem Cell Biol; 2006 Mar; 38(3):404-13. PubMed ID: 16297652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of calpains in promoting desmin filaments depolymerization and muscle atrophy.
    Cohen S
    Biochim Biophys Acta Mol Cell Res; 2020 Oct; 1867(10):118788. PubMed ID: 32603758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy.
    McClung JM; Judge AR; Talbert EE; Powers SK
    Am J Physiol Cell Physiol; 2009 Feb; 296(2):C363-71. PubMed ID: 19109522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.