These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 32679632)
1. Degradation of thiocyanate by electrochemical oxidation process in coke oven wastewater: Role of operative parameters and mechanistic study. Turan A; Keyikoglu R; Kobya M; Khataee A Chemosphere; 2020 Sep; 255():127014. PubMed ID: 32679632 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti Zhi D; Zhang J; Wang J; Luo L; Zhou Y; Zhou Y J Environ Manage; 2020 Jul; 265():110571. PubMed ID: 32421562 [TBL] [Abstract][Full Text] [Related]
3. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode. Yang W; Liu G; Chen Y; Miao D; Wei Q; Li H; Ma L; Zhou K; Liu L; Yu Z Chemosphere; 2020 Aug; 252():126499. PubMed ID: 32224356 [TBL] [Abstract][Full Text] [Related]
4. Performance of (in)active anodic materials for the electrooxidation of phenolic wastewaters from cashew-nut processing industry. Oliveira EMS; Silva FR; Morais CCO; Oliveira TMBF; Martínez-Huitle CA; Motheo AJ; Albuquerque CC; Castro SSL Chemosphere; 2018 Jun; 201():740-748. PubMed ID: 29547862 [TBL] [Abstract][Full Text] [Related]
5. Degradation of cyanide, aniline and phenol in pre-treated coke oven wastewater by peroxide assisted electro-oxidation process. Singh H; Mishra BK Water Sci Technol; 2018 Dec; 78(10):2214-2227. PubMed ID: 30629549 [TBL] [Abstract][Full Text] [Related]
6. Removal of organic compounds from cooling tower blowdown by electrochemical oxidation: Role of electrodes and operational parameters. Saha P; Bruning H; Wagner TV; Rijnaarts HHM Chemosphere; 2020 Nov; 259():127491. PubMed ID: 32650167 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical degradation of Mordant Blue 13 azo dye using boron-doped diamond and dimensionally stable anodes: influence of experimental parameters and water matrix. Kenova TA; Kornienko GV; Golubtsova OA; Kornienko VL; Maksimov NG Environ Sci Pollut Res Int; 2018 Oct; 25(30):30425-30440. PubMed ID: 30159847 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes. Ridruejo C; Centellas F; Cabot PL; Sirés I; Brillas E Water Res; 2018 Jan; 128():71-81. PubMed ID: 29091806 [TBL] [Abstract][Full Text] [Related]
9. Anodic oxidation of bisphenol A by different dimensionally stable electrodes. Can OT; Tutun MM; Keyikoglu R Water Sci Technol; 2021 Apr; 83(8):1907-1919. PubMed ID: 33905361 [TBL] [Abstract][Full Text] [Related]
10. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Zhu X; Ni J; Lai P Water Res; 2009 Sep; 43(17):4347-55. PubMed ID: 19595422 [TBL] [Abstract][Full Text] [Related]
11. Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, COD and phenol. Sasidharan Pillai IM; Gupta AK J Environ Manage; 2016 Jul; 176():45-53. PubMed ID: 27039363 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters. Tang Y; He D; Guo Y; Qu W; Shang J; Zhou L; Pan R; Dong W Chemosphere; 2020 Nov; 258():127368. PubMed ID: 32554018 [TBL] [Abstract][Full Text] [Related]
13. Toward efficient electrocatalytic degradation of iohexol using active anodes: A laser-made versus commercial anodes. Bomfim SA; Dória AR; Gonzaga IMD; Oliveira RVM; Romão LPC; Salazar-Banda GR; Ferreira LFR; Eguiluz KIB Chemosphere; 2022 Jul; 299():134350. PubMed ID: 35331750 [TBL] [Abstract][Full Text] [Related]
14. Characterization and comparison of Ti/TiO Moura de Salles Pupo M; Albahaca Oliva JM; Barrios Eguiluz KI; Salazar-Banda GR; Radjenovic J Chemosphere; 2020 Aug; 253():126701. PubMed ID: 32302902 [TBL] [Abstract][Full Text] [Related]
15. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO Xing X; Ni J; Zhu X; Jiang Y; Xia J Chemosphere; 2018 Aug; 205():361-368. PubMed ID: 29704843 [TBL] [Abstract][Full Text] [Related]
16. Role of electrode materials for the anodic oxidation of a real landfill leachate--comparison between Ti-Ru-Sn ternary oxide, PbO(2) and boron-doped diamond anode. Panizza M; Martinez-Huitle CA Chemosphere; 2013 Jan; 90(4):1455-60. PubMed ID: 23026163 [TBL] [Abstract][Full Text] [Related]
17. The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes. Zhao G; Shen S; Li M; Wu M; Cao T; Li D Chemosphere; 2008 Nov; 73(9):1407-13. PubMed ID: 18804841 [TBL] [Abstract][Full Text] [Related]
18. Applicability of boron-doped diamond electrode to the degradation of chloride-mediated and chloride-free wastewaters. Wu M; Zhao G; Li M; Liu L; Li D J Hazard Mater; 2009 Apr; 163(1):26-31. PubMed ID: 18656304 [TBL] [Abstract][Full Text] [Related]
19. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Guzmán-Duque FL; Palma-Goyes RE; González I; Peñuela G; Torres-Palma RA J Hazard Mater; 2014 Aug; 278():221-6. PubMed ID: 24981674 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical oxidation of aniline using Ti/RuO Zhu X; Hu W; Feng C; Chen N; Chen H; Kuang P; Deng Y; Ma L Chemosphere; 2021 Apr; 269():128734. PubMed ID: 33143899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]