BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32679825)

  • 1. Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour-A Parameter Identification Framework.
    Schulte R; Ostwald R; Menzel A
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperelastic Material Parameter Determination and Numerical Study of TPU and PDMS Dampers.
    Emminger C; Çakmak UD; Preuer R; Graz I; Major Z
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage.
    Lin W; Meng Q; Li J; Chen Z; Jin Z
    Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels.
    Kainz MP; Greiner A; Hinrichsen J; Kolb D; Comellas E; Steinmann P; Budday S; Terzano M; Holzapfel GA
    Front Bioeng Biotechnol; 2023; 11():1143304. PubMed ID: 37101751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical characterisation of polyurethane elastomer for biomedical applications.
    Kanyanta V; Ivankovic A
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):51-62. PubMed ID: 19878902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials.
    Weizel A; Distler T; Detsch R; Boccaccini AR; Seitz H; Budday S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105618. PubMed ID: 36566662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fidelity of the estimation of the deformation gradient from data deduced from the motion of markers placed on a body that is subject to an inhomogeneous deformation field.
    Průša V; Rajagopal KR; Saravanan U
    J Biomech Eng; 2013 Aug; 135(8):81004. PubMed ID: 23760183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of High Velocity Impact on Concrete Structures Using a Rate-Dependent Plastic-Damage Microplane Approach at Finite Strains.
    Indriyantho BR; Zreid I; Fleischhauer R; Kaliske M
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized parameter estimation and calibration for biokinetic models using correlation and single variable optimisations: Application to sulfate reduction modelling in anaerobic digestion.
    Ahmed W; Rodríguez J
    Water Res; 2017 Oct; 122():407-418. PubMed ID: 28622633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical behaviour of brain tissue: large strain response and constitutive modelling.
    Hrapko M; van Dommelen JA; Peters GW; Wismans JS
    Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density.
    Whitford C; Studer H; Boote C; Meek KM; Elsheikh A
    J Mech Behav Biomed Mater; 2015 Feb; 42():76-87. PubMed ID: 25460928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter Identification and Validation of Shape-Memory Polymers within the Framework of Finite Strain Viscoelasticity.
    Ghobadi E; Shutov A; Steeb H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and Strain Rate Effects on the Uniaxial Tensile Behaviour of ETFE Foils.
    Surholt F; Uhlemann J; Stranghöner N
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental modeling of nonuniform deformation in finite volume evaluation region of heterogeneous material.
    Uchida M; Kaneko Y
    Heliyon; 2018 Apr; 4(4):e00578. PubMed ID: 29862354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a Lung Model in the Age of COVID-19: A Digital Image Correlation and Inverse Finite Element Analysis Framework.
    Maghsoudi-Ganjeh M; Mariano CA; Sattari S; Arora H; Eskandari M
    Front Bioeng Biotechnol; 2021; 9():684778. PubMed ID: 34765590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter identification for the simulation of the periodontal ligament during the initial phase of orthodontic tooth movement.
    Kaiser AH; Keilig L; Klein R; Bourauel C
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):333-348. PubMed ID: 33136452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poro-viscoelastic behaviour of the zona pellucida: Impact of three-dimensional modelling on material characterisation.
    Karimian K; Seydewitz R; Töpfer D; Böl M
    J Mech Behav Biomed Mater; 2022 Jul; 131():105211. PubMed ID: 35430519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.