These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32679830)

  • 1. Tensile Creep Model of Slab Concrete Based on Microprestress-Solidification Theory.
    Zhao Z; Zhang H; Fang B; Sun Y; Zhong Y; Shi T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Feedback Control Method for Determining Early-Age Restrained Creep of Concrete Using a Temperature Stress Testing Machine.
    Zhu H; Li Q; Hu Y; Ma R
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29941829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Curing Conditions on the Hydration of MgO in Cement Paste Mixed with MgO Expansive Agent.
    Zhao X; Mao Z; Huang X; Luo P; Deng M; Tang M
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on the Crack Risk of Early-Age Concrete under the Temperature Stress Test Machine.
    Liu L; Ouyang J; Li F; Xin J; Huang D; Gao S
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
    Schlappal T; Schweigler M; Gmainer S; Peyerl M; Pichler B
    Mater Struct; 2017; 50(6):244. PubMed ID: 29213209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanoscale perspective on the effects of transverse microprestress on drying creep of nanoporous solids.
    Sinko R; Bažant ZP; Keten S
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170570. PubMed ID: 29434509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Creep Damage Constitutive Model of Concrete Based on Fractional Calculus Theory.
    Zhang C; Zhu Z; Zhu S; He Z; Zhu D; Liu J; Meng S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31072057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on the Early-Age Cracking of Concrete Added with Magnesium Oxide under a Temperature Stress Test Machine.
    Li Z; Chen Z; Li J; Xu Z; Wang W
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Fly Ash on the Tensile Creep Prediction of High-Strength Concrete at Early Ages.
    Yao J; Yao S; Huang S; Ni T; Jiang C; Yang Y; Kong D
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Developed Testing System for Determining the Temperature Behavior of Concrete.
    Zhu H; Li Q; Hu Y
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Studies on the Effect of Properties and Micro-Structure on the Creep of Concrete-Filled Steel Tubes.
    Zhang R; Ma L; Wang Q; Li J; Wang Y; Chen H; Samosvat V
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.
    Drexel M; Theiner Y; Hofstetter G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Working Temperature Conditions on the Autogenous Deformation of High-Performance Concrete Mixed with MgO Expansive Agent.
    Cao Z; Mao Z; Gong J; Huang X; Deng M
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of MgO Expansive Agent and Steel Fiber on Crack Resistance of a Bridge Deck.
    Jiang F; Deng M; Mo L; Wu W
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32660075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Modeling of Early-Age Behavior of Structural Concrete.
    Pan Y; Prado A; Porras R; Hafez OM; Bolander JE
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite Element Simulation and Multi-Factor Stress Prediction Model for Cement Concrete Pavement Considering Void under Slab.
    Liu B; Zhou Y; Gu L; Huang X
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets.
    Chen Z; Xu Y; Hua J; Zhou X; Wang X; Huang L
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep constitutive modeling of the shear strength of the permafrost-concrete interface considering the stress level at -1°C.
    He F; Lei W; Mao E; Liu Q; Chen H; Wang X
    PLoS One; 2024; 19(4):e0297824. PubMed ID: 38687813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.