These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32679873)

  • 1. Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose.
    Serebrovskaya EO; Podvalnaya NM; Dudenkova VV; Efremova AS; Gurskaya NG; Gorbachev DA; Luzhin AV; Kantidze OL; Zagaynova EV; Shram SI; Lukyanov KA
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination.
    Wang Z; Michaud GA; Cheng Z; Zhang Y; Hinds TR; Fan E; Cong F; Xu W
    Genes Dev; 2012 Feb; 26(3):235-40. PubMed ID: 22267412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal.
    DaRosa PA; Wang Z; Jiang X; Pruneda JN; Cong F; Klevit RE; Xu W
    Nature; 2015 Jan; 517(7533):223-6. PubMed ID: 25327252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and Biophysical Assays of PAR-WWE Domain Interactions and Production of iso-ADPr for PAR-Binding Analysis.
    Wang Z; Xu W
    Methods Mol Biol; 2018; 1813():65-73. PubMed ID: 30097861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of the WWE domain of RNF146 modulates poly-(ADP)-ribose dynamics at sites of DNA damage.
    Al-Rahahleh RQ; Saville KM; Andrews JF; Wu Z; Koczor CA; Sobol RW
    bioRxiv; 2023 Dec; ():. PubMed ID: 38234836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
    Sanford L; Palmer A
    Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A turn-on split-luciferase sensor for the direct detection of poly(ADP-ribose) as a marker for DNA repair and cell death.
    Furman JL; Mok PW; Shen S; Stains CI; Ghosh I
    Chem Commun (Camb); 2011 Jan; 47(1):397-9. PubMed ID: 20830433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP.
    Trull KJ; Miller P; Tat K; Varney SA; Conley JM; Tantama M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
    Mohsin M; Abdin MZ; Nischal L; Kardam H; Ahmad A
    Biosens Bioelectron; 2013 Dec; 50():72-7. PubMed ID: 23835220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ADP-ribose) Polymerase 1 Modulates Interaction of the Nucleotide Excision Repair Factor XPC-RAD23B with DNA via Poly(ADP-ribosyl)ation.
    Maltseva EA; Rechkunova NI; Sukhanova MV; Lavrik OI
    J Biol Chem; 2015 Sep; 290(36):21811-20. PubMed ID: 26170451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells.
    Weidele K; Kunzmann A; Schmitz M; Beneke S; Bürkle A
    Biochem Pharmacol; 2010 Oct; 80(7):1103-12. PubMed ID: 20599792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The recognition and removal of cellular poly(ADP-ribose) signals.
    Barkauskaite E; Jankevicius G; Ladurner AG; Ahel I; Timinszky G
    FEBS J; 2013 Aug; 280(15):3491-507. PubMed ID: 23711178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction.
    Yung TM; Sato S; Satoh MS
    J Biol Chem; 2004 Sep; 279(38):39686-96. PubMed ID: 15247263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iso-ADP-Ribose Fluorescence Polarization Probe for the Screening of RNF146 WWE Domain Inhibitors.
    Peng K; Anmangandla A; Jana S; Jin Y; Lin H
    ACS Chem Biol; 2024 Feb; 19(2):300-307. PubMed ID: 38237916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry.
    Zubel T; Martello R; Bürkle A; Mangerich A
    Methods Mol Biol; 2017; 1608():3-18. PubMed ID: 28695499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically Encoded Fluorescent Indicators to Visualize Protein Phosphorylation in Living Cells.
    Sato M; Umezawa Y
    Methods Mol Biol; 2016; 1360():149-56. PubMed ID: 26501908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor.
    Kost LA; Nikitin ES; Ivanova VO; Sung U; Putintseva EV; Chudakov DM; Balaban PM; Lukyanov KA; Bogdanov AM
    PLoS One; 2017; 12(9):e0184225. PubMed ID: 28863184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.