These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32679953)

  • 1. Circular pyramidal kirigami microscanner with millimeter-range low-power lens drive.
    Hashimoto M; Taguchi Y
    Opt Express; 2020 Jun; 28(12):17457-17467. PubMed ID: 32679953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Fabrication of a Kirigami-Inspired Electrothermal MEMS Scanner with Large Displacement.
    Hashimoto M; Taguchi Y
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and electronic transport characteristics of highly stretchable graphene kirigami.
    Mortazavi B; Lherbier A; Fan Z; Harju A; Rabczuk T; Charlier JC
    Nanoscale; 2017 Nov; 9(42):16329-16341. PubMed ID: 29051943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kirigami Engineering-Nanoscale Structures Exhibiting a Range of Controllable 3D Configurations.
    Zhang X; Medina L; Cai H; Aksyuk V; Espinosa HD; Lopez D
    Adv Mater; 2021 Feb; 33(5):e2005275. PubMed ID: 33349995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-kirigami with giant optical chirality.
    Liu Z; Du H; Li J; Lu L; Li ZY; Fang NX
    Sci Adv; 2018 Jul; 4(7):eaat4436. PubMed ID: 29984308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable active kirigami metasheets with more freedom of actuation.
    Tang Y; Li Y; Hong Y; Yang S; Yin J
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26407-26413. PubMed ID: 31843912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with "folding".
    Chen S; Chen J; Zhang X; Li ZY; Li J
    Light Sci Appl; 2020; 9():75. PubMed ID: 32377337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices.
    Eda A; Yasuga H; Sato T; Sato Y; Suto K; Tachi T; Iwase E
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple Approach to High-Performance Stretchable Heaters Based on Kirigami Patterning of Conductive Paper for Wearable Thermotherapy Applications.
    Jang NS; Kim KH; Ha SH; Jung SH; Lee HM; Kim JM
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19612-19621. PubMed ID: 28534393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kirigami enhances film adhesion.
    Zhao R; Lin S; Yuk H; Zhao X
    Soft Matter; 2018 Mar; 14(13):2515-2525. PubMed ID: 29537019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origami and Kirigami Nanocomposites.
    Xu L; Shyu TC; Kotov NA
    ACS Nano; 2017 Aug; 11(8):7587-7599. PubMed ID: 28735531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive lattice kirigami.
    Castle T; Sussman DM; Tanis M; Kamien RD
    Sci Adv; 2016 Sep; 2(9):e1601258. PubMed ID: 27679822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch.
    Hao XP; Xu Z; Li CY; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2020 Jun; 32(22):e2000781. PubMed ID: 32319155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Micro-/Nanotextured Hybrid PEDOT:PSS-Silicon Photovoltaic Cells Employing Kirigami Graphene.
    Huang CH; Chen ZY; Chiu CL; Huang TT; Meng HF; Yu P
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29901-29909. PubMed ID: 31353900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kirigami-Inspired Inflatables with Programmable Shapes.
    Jin L; Forte AE; Deng B; Rafsanjani A; Bertoldi K
    Adv Mater; 2020 Aug; 32(33):e2001863. PubMed ID: 32627259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene kirigami.
    Blees MK; Barnard AW; Rose PA; Roberts SP; McGill KL; Huang PY; Ruyack AR; Kevek JW; Kobrin B; Muller DA; McEuen PL
    Nature; 2015 Aug; 524(7564):204-7. PubMed ID: 26222025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage.
    Wang LC; Song WL; Fang D
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3450-3458. PubMed ID: 30560654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic and stochastic control of kirigami topology.
    Chen S; Choi GPT; Mahadevan L
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4511-4517. PubMed ID: 32054786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kirigami-based Elastic Metamaterials with Anisotropic Mass Density for Subwavelength Flexural Wave Control.
    Zhu R; Yasuda H; Huang GL; Yang JK
    Sci Rep; 2018 Jan; 8(1):483. PubMed ID: 29323177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal spiral inductor using 3D printed shape memory kirigami.
    Kim Y; Phon R; Jeong H; Kim Y; Lim S
    Sci Rep; 2022 Dec; 12(1):22246. PubMed ID: 36564548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.