These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 32679955)
81. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies. Duan G; Schalch J; Zhao X; Zhang J; Averitt RD; Zhang X Opt Express; 2018 Feb; 26(3):2242-2251. PubMed ID: 29401764 [TBL] [Abstract][Full Text] [Related]
82. Broadband near-infrared TiO Zhu Y; Lan T; Liu P; Yang J Appl Opt; 2019 Sep; 58(26):7134-7138. PubMed ID: 31503985 [TBL] [Abstract][Full Text] [Related]
83. Impedance Model of Cylindrical Nanowires for Metamaterial Applications. Alam M; Mahmood A; Azam S; Butt MS; Haq AU; Massoud Y Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31374968 [TBL] [Abstract][Full Text] [Related]
84. Atomic Response in the Near-Field of Nanostructured Plasmonic Metamaterial. Aljunid SA; Chan EA; Adamo G; Ducloy M; Wilkowski D; Zheludev NI Nano Lett; 2016 May; 16(5):3137-41. PubMed ID: 27018806 [TBL] [Abstract][Full Text] [Related]
85. High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes. Xie J; Zhu X; Zang X; Cheng Q; Ye Y; Zhu Y Sci Rep; 2017 Sep; 7(1):11291. PubMed ID: 28900248 [TBL] [Abstract][Full Text] [Related]
86. Terahertz composite plasmonic slabs based on double-layer metallic gratings. Liu D; Chen L; Wu X; Liu F Opt Express; 2020 Jun; 28(12):18212-18223. PubMed ID: 32680022 [TBL] [Abstract][Full Text] [Related]
87. Near-ideal optical metamaterial absorbers with super-octave bandwidth. Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069 [TBL] [Abstract][Full Text] [Related]
88. Kapitza homogenization of deep gratings for designing dielectric metamaterials. Rizza C; Ciattoni A Opt Lett; 2013 Sep; 38(18):3658-60. PubMed ID: 24104839 [TBL] [Abstract][Full Text] [Related]
89. All-Dielectric Surface-Enhanced Infrared Absorption-Based Gas Sensor Using Guided Resonance. Chang Y; Hasan D; Dong B; Wei J; Ma Y; Zhou G; Ang KW; Lee C ACS Appl Mater Interfaces; 2018 Nov; 10(44):38272-38279. PubMed ID: 30360088 [TBL] [Abstract][Full Text] [Related]
90. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Francoeur M; Basu S; Petersen SJ Opt Express; 2011 Sep; 19(20):18774-88. PubMed ID: 21996819 [TBL] [Abstract][Full Text] [Related]
96. Polarization and incidence insensitive analogue of electromagnetically induced reflection metamaterial with high group delay. Ma Q; Hong W; Shui L Opt Express; 2022 Jan; 30(2):3055-3065. PubMed ID: 35209432 [TBL] [Abstract][Full Text] [Related]
97. Numerical Study on Enhanced Line Focusing via Buried Metallic Nanowire Assisted Binary Plate. Kim H Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33499021 [TBL] [Abstract][Full Text] [Related]
98. A meta-substrate to enhance the bandwidth of metamaterials. Chen H; Wang Z; Zhang R; Wang H; Lin S; Yu F; Moser HO Sci Rep; 2014 Jun; 4():5264. PubMed ID: 24919678 [TBL] [Abstract][Full Text] [Related]
99. Liquid Metal Machine Triggered Violin-Like Wire Oscillator. Yuan B; Wang L; Yang X; Ding Y; Tan S; Yi L; He Z; Liu J Adv Sci (Weinh); 2016 Oct; 3(10):1600212. PubMed ID: 27840803 [No Abstract] [Full Text] [Related]
100. Electromagnetically Induced Absorption Overcomes the Upper Limit of Light Absorption: Dipole-Dipole Coupling with Phase Retardation in Plasmonic-Dielectric Dimers. Matsumori K; Fujimura R; Retsch M J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):19127-19140. PubMed ID: 37791102 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]