These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32679956)

  • 1. Unified integration scheme using an N × N active switch for efficient generation of a multi-photon parallel state.
    Kiyohara T; Okamoto R; Takeuchi S
    Opt Express; 2020 Jun; 28(12):17490-17501. PubMed ID: 32679956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency single-photon generation via large-scale active time multiplexing.
    Kaneda F; Kwiat PG
    Sci Adv; 2019 Oct; 5(10):eaaw8586. PubMed ID: 31620555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution.
    Liu MT; Lim HC
    Opt Express; 2014 Sep; 22(19):23261-75. PubMed ID: 25321795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heralded generation of multipartite entanglement for one photon by using a single two-dimensional nonlinear photonic crystal.
    Shi J; Xu P; Zhong ML; Gong YX; Bai YF; Yu WJ; Li QW; Jin H; Zhu SN
    Opt Express; 2013 Apr; 21(7):7875-81. PubMed ID: 23571878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency multiplexing for quasi-deterministic heralded single-photon sources.
    Joshi C; Farsi A; Clemmen S; Ramelow S; Gaeta AL
    Nat Commun; 2018 Feb; 9(1):847. PubMed ID: 29487312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active temporal multiplexing of indistinguishable heralded single photons.
    Xiong C; Zhang X; Liu Z; Collins MJ; Mahendra A; Helt LG; Steel MJ; Choi DY; Chae CJ; Leong PH; Eggleton BJ
    Nat Commun; 2016 Mar; 7():10853. PubMed ID: 26996317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high-rate nonclassical light source with 50 GHz-repetition-rate mode-locked pump pulses and multiplexed single-photon detectors.
    Wakui K; Tsujimoto Y; Fujiwara M; Morohashi I; Kishimoto T; China F; Yabuno M; Miki S; Terai H; Sasaki M; Takeoka M
    Opt Express; 2020 Jul; 28(15):22399-22411. PubMed ID: 32752502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indistinguishable heralded single photon generation via relative temporal multiplexing of two sources.
    Zhang X; Lee YH; Bell BA; Leong PHW; Rudolph T; Eggleton BJ; Xiong C
    Opt Express; 2017 Oct; 25(21):26067-26075. PubMed ID: 29041268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Storage of Frequency-Multiplexed Heralded Single Photons.
    Seri A; Lago-Rivera D; Lenhard A; Corrielli G; Osellame R; Mazzera M; de Riedmatten H
    Phys Rev Lett; 2019 Aug; 123(8):080502. PubMed ID: 31491206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses.
    Zhang X; Jizan I; He J; Clark AS; Choi DY; Chae CJ; Eggleton BJ; Xiong C
    Opt Lett; 2015 Jun; 40(11):2489-92. PubMed ID: 26030539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission of O-band wavelength-division-multiplexed heralded photons over a noise-corrupted optical fiber channel.
    Liu MT; Lim HC
    Opt Express; 2013 Dec; 21(25):30358-69. PubMed ID: 24514614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources.
    Wang Q; Zhou XY; Guo GC
    Sci Rep; 2016 Oct; 6():35394. PubMed ID: 27759085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of multiplexing of heralded single photon sources using photon number resolving detectors.
    Kiyohara T; Okamoto R; Takeuchi S
    Opt Express; 2016 Nov; 24(24):27288-27297. PubMed ID: 27906301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional multiplexing of heralded single photons from a silicon chip.
    Xiong C; Vo TD; Collins MJ; Li J; Krauss TF; Steel MJ; Clark AS; Eggleton BJ
    Opt Lett; 2013 Dec; 38(23):5176-9. PubMed ID: 24281539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion.
    Kaneda F; Garay-Palmett K; U'Ren AB; Kwiat PG
    Opt Express; 2016 May; 24(10):10733-47. PubMed ID: 27409894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimode heralded single photons based on the DLCZ.
    Wang S; Wang M
    Appl Opt; 2024 Apr; 63(10):2608-2613. PubMed ID: 38568543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scalable multi-photon coincidence detector based on superconducting nanowires.
    Zhu D; Zhao QY; Choi H; Lu TJ; Dane AE; Englund D; Berggren KK
    Nat Nanotechnol; 2018 Jul; 13(7):596-601. PubMed ID: 29867085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.
    Shomroni I; Rosenblum S; Lovsky Y; Bechler O; Guendelman G; Dayan B
    Science; 2014 Aug; 345(6199):903-6. PubMed ID: 25146283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient heralding of entangled single photons.
    Ramelow S; Mech A; Giustina M; Gröblacher S; Wieczorek W; Beyer J; Lita A; Calkins B; Gerrits T; Nam SW; Zeilinger A; Ursin R
    Opt Express; 2013 Mar; 21(6):6707-17. PubMed ID: 23546052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-photon switch and transistor enabled by a solid-state quantum memory.
    Sun S; Kim H; Luo Z; Solomon GS; Waks E
    Science; 2018 Jul; 361(6397):57-60. PubMed ID: 29976819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.