BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32679965)

  • 1. Ultra-high sensitivity sensing based on ultraviolet plasmonic enhancements in semiconductor triangular prism meta-antenna systems.
    He Z; Li Z; Li C; Xue W; Cui W
    Opt Express; 2020 Jun; 28(12):17595-17610. PubMed ID: 32679965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet Interband Plasmonics With Si Nanostructures.
    Dong Z; Wang T; Chi X; Ho J; Tserkezis C; Yap SLK; Rusydi A; Tjiptoharsono F; Thian D; Mortensen NA; Yang JKW
    Nano Lett; 2019 Nov; 19(11):8040-8048. PubMed ID: 31560545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Refractive Index Sensors with High Figures of Merit
    Gao B; Wang Y; Zhang T; Xu Y; He A; Dai L; Zhang J
    ACS Nano; 2019 Aug; 13(8):9131-9138. PubMed ID: 31390178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Opto Plasmonic-Controlled Bulk and Surface Sensitivity Analysis of a Paired Nano-Structured Antenna with a Label-Free Detection Approach.
    Verma S; Ghosh S; Rahman BMA
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. n-type Ge/Si antennas for THz sensing.
    Chavarin CA; Hardt E; Gruessing S; Skibitzki O; Costina I; Spirito D; Seifert W; Klesse W; Manganelli CL; You C; Flesch J; Piehler J; Missori M; Baldassarre L; Witzigmann B; Capellini G
    Opt Express; 2021 Mar; 29(5):7680-7689. PubMed ID: 33726264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating.
    Li R; Wu D; Liu Y; Yu L; Yu Z; Ye H
    Nanoscale Res Lett; 2017 Dec; 12(1):1. PubMed ID: 28050875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonically-powered hot carrier induced modulation of light emission in a two-dimensional GaAs semiconductor quantum well.
    Ashalley E; Gryczynski K; Wang Z; Salamo G; Neogi A
    Nanoscale; 2019 Mar; 11(9):3827-3836. PubMed ID: 30633286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically Tunable All-PCM Visible Plasmonics.
    Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R
    Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates.
    Baldassarre L; Sakat E; Frigerio J; Samarelli A; Gallacher K; Calandrini E; Isella G; Paul DJ; Ortolani M; Biagioni P
    Nano Lett; 2015 Nov; 15(11):7225-31. PubMed ID: 26457387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Plasmonic Resonance Characteristics of AgNRs-Gold Film Hybrid System.
    Yin Y; Zhu J; Wang Z; Ma G; Yuan H; Li X
    Front Chem; 2020; 8():553541. PubMed ID: 33553101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the plasmonic near-field of gold nanocrescent antennas.
    Bukasov R; Ali TA; Nordlander P; Shumaker-Parry JS
    ACS Nano; 2010 Nov; 4(11):6639-50. PubMed ID: 21038885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipolar Plasmonic Resonances of Aluminum Nanoantenna Tuned by Graphene.
    Yan Z; Zhu Q; Lu X; Du W; Pu X; Hu T; Yu L; Huang Z; Cai P; Tang C
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33451028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-semiconductor plasmonic nanoantennas for infrared sensing.
    Law S; Yu L; Rosenberg A; Wasserman D
    Nano Lett; 2013 Sep; 13(9):4569-74. PubMed ID: 23987983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.