These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32679965)

  • 21. Dumbbell gold nanoparticle dimer antennas with advanced optical properties.
    Herrmann JF; Höppener C
    Beilstein J Nanotechnol; 2018; 9():2188-2197. PubMed ID: 30202689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing.
    Jankovic N; Cselyuszka N
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators.
    Berrier A; Albella P; Poyli MA; Ulbricht R; Bonn M; Aizpurua J; Rivas JG
    Opt Express; 2012 Feb; 20(5):5052-60. PubMed ID: 22418310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering the optical response of plasmonic nanoantennas.
    Fischer H; Martin OJ
    Opt Express; 2008 Jun; 16(12):9144-54. PubMed ID: 18545626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical investigations of a near-infrared plasmonic refractive index sensor with extremely high figure of merit and low loss based on the hybrid plasmonic waveguide-nanocavity system.
    Chen L; Liu Y; Yu Z; Wu D; Ma R; Zhang Y; Ye H
    Opt Express; 2016 Oct; 24(20):23260-23270. PubMed ID: 27828390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas.
    Zhang Q; Xiao JJ; Li M; Han D; Gao L
    Sci Rep; 2015 Nov; 5():17234. PubMed ID: 26611726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic sensors with an ultra-high figure of merit.
    Liu Z; Liu G; Liu X; Fu G
    Nanotechnology; 2020 Mar; 31(11):115208. PubMed ID: 31751986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal.
    Gerislioglu B; Dong L; Ahmadivand A; Hu H; Nordlander P; Halas NJ
    Nano Lett; 2020 Mar; 20(3):2087-2093. PubMed ID: 31990568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silicon-Based Embedded Trenches of Active Antennas for High-Responsivity Omnidirectional Photodetection at Telecommunication Wavelengths.
    Lin KT; Chan CJ; Lai YS; Shiu LT; Lin CC; Chen HL
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3150-3159. PubMed ID: 30624888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas.
    Gutha RR; Sadeghi SM; Sharp C; Wing WJ
    Nanotechnology; 2017 Sep; 28(35):355504. PubMed ID: 28649962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide.
    Muskens OL; Bergamini L; Wang Y; Gaskell JM; Zabala N; de Groot CH; Sheel DW; Aizpurua J
    Light Sci Appl; 2016 Oct; 5(10):e16173. PubMed ID: 30167127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generating Ultrabroadband Deep-UV Radiation and Sub-10 nm Gap by Hybrid-Morphology Gold Antennas.
    Shi L; Andrade JRC; Tajalli A; Geng J; Yi J; Heidenblut T; Segerink FB; Babushkin I; Kholodtsova M; Merdji H; Bastiaens B; Morgner U; Kovacev M
    Nano Lett; 2019 Jul; 19(7):4779-4786. PubMed ID: 31244236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator.
    Zhang Z; Yang J; He X; Zhang J; Huang J; Chen D; Han Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29300331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics.
    Zhang X; Li P; Barreda Á; Gutiérrez Y; González F; Moreno F; Everitt HO; Liu J
    Nanoscale Horiz; 2016 Jan; 1(1):75-80. PubMed ID: 32260606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas.
    Pfeiffer M; Atkinson P; Rastelli A; Schmidt OG; Giessen H; Lippitz M; Lindfors K
    Sci Rep; 2018 Feb; 8(1):3415. PubMed ID: 29467499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range.
    Wei Y; Pei H; Yan B; Zhu Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array.
    Verma S; Rahman BMA
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity.
    Xue B; Wang D; Zuo J; Kong X; Zhang Y; Liu X; Tu L; Chang Y; Li C; Wu F; Zeng Q; Zhao H; Zhao H; Zhang H
    Nanoscale; 2015 May; 7(17):8048-57. PubMed ID: 25869897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.