These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32679967)

  • 1. Tunable metamaterial filter for optical communication in the terahertz frequency range.
    Yang W; Lin YS
    Opt Express; 2020 Jun; 28(12):17620-17629. PubMed ID: 32679967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application.
    Lai WH; Li B; Fu SH; Lin YS
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microelectromechanically tunable multiband metamaterial with preserved isotropy.
    Pitchappa P; Ho CP; Qian Y; Dhakar L; Singh N; Lee C
    Sci Rep; 2015 Jun; 5():11678. PubMed ID: 26115416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrothermally tunable terahertz cross-shaped metamaterial for opto-logic operation characteristics.
    Xu R; Xu X; Lin YS
    iScience; 2022 Apr; 25(4):104072. PubMed ID: 35355519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency.
    Li X; Yang L; Hu C; Luo X; Hong M
    Opt Express; 2011 Mar; 19(6):5283-9. PubMed ID: 21445165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic.
    Xu Z; Lin Z; Cheng S; Lin YS
    Opt Lett; 2019 Aug; 44(16):3944-3947. PubMed ID: 31415518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-tunable dual-layer terahertz metamaterials.
    Zhao X; Fan K; Zhang J; Keiser GR; Duan G; Averitt RD; Zhang X
    Microsyst Nanoeng; 2016; 2():16025. PubMed ID: 31057825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Compact Metamaterial-Based Double-Negative/Near-Zero Index Resonator for 6G Terahertz Wireless Applications.
    Musaed AA; Al-Bawri SS; Islam MT; Al-Gburi AJA; Singh MJ
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable terahertz switch using flexible L-shaped metamaterial.
    Lu F; Ou H; Lin YS
    Opt Lett; 2020 Dec; 45(23):6482-6485. PubMed ID: 33258842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications.
    Xu C; Ren Z; Wei J; Lee C
    iScience; 2022 Feb; 25(2):103799. PubMed ID: 35198867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial.
    Liu M; Susli M; Silva D; Putrino G; Kala H; Fan S; Cole M; Faraone L; Wallace VP; Padilla WJ; Powell DA; Shadrivov IV; Martyniuk M
    Microsyst Nanoeng; 2017; 3():17033. PubMed ID: 31057871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Tunable Terahertz Metamaterial Sensor with Single- and Dual-Resonance Characteristic.
    Yang J; Lin YS
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-actuated thermally tunable on-chip terahertz filters based on a whispering gallery mode resonator.
    Wang Z; Dong G; Yuan S; Chen L; Wu X; Zhang X
    Opt Lett; 2019 Oct; 44(19):4670-4673. PubMed ID: 31568413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission characteristics of all-dielectric guided-mode resonance filter in the THz region.
    Bark HS; Kim GJ; Jeon TI
    Sci Rep; 2018 Sep; 8(1):13570. PubMed ID: 30206273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission.
    Han Z; Ohno S; Tokizane Y; Nawata K; Notake T; Takida Y; Minamide H
    Opt Express; 2017 Dec; 25(25):31186-31196. PubMed ID: 29245795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure.
    Zhang Y; Qiao S; Liang S; Wu Z; Yang Z; Feng Z; Sun H; Zhou Y; Sun L; Chen Z; Zou X; Zhang B; Hu J; Li S; Chen Q; Li L; Xu G; Zhao Y; Liu S
    Nano Lett; 2015 May; 15(5):3501-6. PubMed ID: 25919444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of photonics-aided terahertz wireless transmission system with using silicon photonics circuit.
    Moon SR; Han S; Yoo S; Park H; Lee WK; Lee JK; Park J; Yu K; Cho SH; Kim J
    Opt Express; 2020 Aug; 28(16):23397-23408. PubMed ID: 32752337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator.
    Han Z; Kohno K; Fujita H; Hirakawa K; Toshiyoshi H
    Opt Express; 2014 Sep; 22(18):21326-39. PubMed ID: 25321511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber.
    Wang L; Ge S; Hu W; Nakajima M; Lu Y
    Opt Express; 2017 Oct; 25(20):23873-23879. PubMed ID: 29041336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.