These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32679972)

  • 1. Optothermal generation, trapping, and manipulation of microbubbles.
    Sarabia-Alonso JA; Ortega-Mendoza JG; Ramírez-San-Juan JC; Zaca-Morán P; Ramírez-Ramírez J; Padilla-Vivanco A; Muñoz-Pérez FM; Ramos-García R
    Opt Express; 2020 Jun; 28(12):17672-17682. PubMed ID: 32679972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marangoni force-driven manipulation of photothermally-induced microbubbles.
    Ortega-Mendoza JG; Sarabia-Alonso JA; Zaca-Morán P; Padilla-Vivanco A; Toxqui-Quitl C; Rivas-Cambero I; Ramirez-Ramirez J; Torres-Hurtado SA; Ramos-García R
    Opt Express; 2018 Mar; 26(6):6653-6662. PubMed ID: 29609352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D trapping of microbubbles by the Marangoni force.
    Sarabia-Alonso JA; Ortega-Mendoza JG; Mansurova S; Muñoz-Pérez FM; Ramos-García R
    Opt Lett; 2021 Dec; 46(23):5786-5789. PubMed ID: 34851890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically induced resonance of nanoparticle-loaded microbubbles.
    Dove JD; Borden MA; Murray TW
    Opt Lett; 2014 Jul; 39(13):3732-5. PubMed ID: 24978723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid.
    Kim Y; Ding H; Zheng Y
    Nano Lett; 2020 Oct; 20(10):7020-7027. PubMed ID: 32667815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach of bubble generation and manipulation by using the photothermal effects of laser irradiation on light absorbing particles.
    Li BW; He JW; Bai W; Wang HD; Ji F; Zhong MC
    Rev Sci Instrum; 2021 Nov; 92(11):114902. PubMed ID: 34852507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses.
    Pérez-Gutiérrez FG; Camacho-López S; Aguilar G
    J Biomed Opt; 2011 Nov; 16(11):115001. PubMed ID: 22112103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine crystallization in solution by CW laser-induced microbubble on gold thin film surface.
    Uwada T; Fujii S; Sugiyama T; Usman A; Miura A; Masuhara H; Kanaizuka K; Haga MA
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1158-63. PubMed ID: 22339812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermocavitation: a mechanism to pulse fiber lasers.
    Zaca-Morán R; Amaxal-Cuatetl C; Zaca-Morán P; Castillo-Mixcóatl J; Ramos-García R; Padilla-Martínez JP
    Opt Express; 2021 Jul; 29(15):23439-23446. PubMed ID: 34614609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of primary and secondary microbubbles created by laser-induced breakdown of an optically trapped nanoparticle.
    Arita Y; Antkowiak M; Venugopalan V; Gunn-Moore FJ; Dholakia K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016319. PubMed ID: 22400669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle Assembling Dynamics Induced by Pulsed Optical Force.
    Jui-Kai Chen J; Chiang WY; Kudo T; Usman A; Masuhara H
    Chem Rec; 2021 Jun; 21(6):1473-1488. PubMed ID: 33661570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling photothermal and acoustical induced microbubble generation and growth.
    Krasovitski B; Kislev H; Kimmel E
    Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles.
    Miniewicz A; Bartkiewicz S; Orlikowska H; Dradrach K
    Sci Rep; 2016 Oct; 6():34787. PubMed ID: 27713512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling bubble generation by femtosecond laser-induced filamentation.
    Rao DCK; Mooss VS; Mishra YN; Hanstorp D
    Sci Rep; 2022 Sep; 12(1):15742. PubMed ID: 36131083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical observations of acoustical radiation force effects on individual air bubbles.
    Palanchon P; Tortoli P; Bouakaz A; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):104-10. PubMed ID: 15742566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle.
    Setoura K; Ito S; Miyasaka H
    Nanoscale; 2017 Jan; 9(2):719-730. PubMed ID: 27959376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Optical Formation and Manipulation of Microbubbles on a Porous Gold Nanofilm.
    Cao Q; Wu T; Chen X; Gong Z; Wen A
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32397627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.
    Faccio D; Tamošauskas G; Rubino E; Darginavičius J; Papazoglou DG; Tzortzakis S; Couairon A; Dubietis A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036304. PubMed ID: 23031010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.