These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32680038)

  • 1. Photon blockade by enhancing coupling via a nonlinear medium.
    Liu JS; Yang JY; Liu HY; Zhu AD
    Opt Express; 2020 Jun; 28(12):18397-18406. PubMed ID: 32680038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squeezed optomechanics with phase-matched amplification and dissipation.
    Lü XY; Wu Y; Johansson JR; Jing H; Zhang J; Nori F
    Phys Rev Lett; 2015 Mar; 114(9):093602. PubMed ID: 25793814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kerr-nonlinearity enhanced conventional photon blockade in a second-order nonlinear system.
    Lin H; Wang X; Yao Z; Zou D
    Opt Express; 2020 Jun; 28(12):17643-17652. PubMed ID: 32679969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photon blockade in an optomechanical system with parametric amplification.
    Wang DY; Bai CH; Han X; Liu S; Zhang S; Wang HF
    Opt Lett; 2020 May; 45(9):2604-2607. PubMed ID: 32356827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.
    Yin TS; Lü XY; Wan LL; Bin SW; Wu Y
    Opt Lett; 2018 May; 43(9):2050-2053. PubMed ID: 29714743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact optimal control of photon blockade with weakly nonlinear coupled cavities.
    Shen HZ; Zhou YH; Liu HD; Wang GC; Yi XX
    Opt Express; 2015 Dec; 23(25):32835-58. PubMed ID: 26699072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of multiqubit steady-state quantum correlation by squeezed-reservoir engineering.
    Hou QZ; You JB; Yang WL; An JH; Chen CY; Feng M
    Opt Express; 2018 Aug; 26(16):20459-20470. PubMed ID: 30119356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the Unconventional Photon Blockade.
    Snijders HJ; Frey JA; Norman J; Flayac H; Savona V; Gossard AC; Bowers JE; van Exter MP; Bouwmeester D; Löffler W
    Phys Rev Lett; 2018 Jul; 121(4):043601. PubMed ID: 30095925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field.
    Zhang W; Wang T; Han X; Zhang S; Wang HF
    Opt Express; 2022 Mar; 30(7):10969-10980. PubMed ID: 35473050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity-Assisted Single-Mode and Two-Mode Spin-Squeezed States via Phase-Locked Atom-Photon Coupling.
    Zhang YC; Zhou XF; Zhou X; Guo GC; Zhou ZW
    Phys Rev Lett; 2017 Feb; 118(8):083604. PubMed ID: 28282155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon blockade via quantum interference in a strong coupling qubit-cavity system.
    Deng WW; Li GX; Qin H
    Opt Express; 2017 Mar; 25(6):6767-6783. PubMed ID: 28381020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields.
    Zhang W; Wang DY; Bai CH; Wang T; Zhang S; Wang HF
    Opt Express; 2021 Apr; 29(8):11773-11783. PubMed ID: 33984952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable phonon blockade in quadratically coupled optomechanical systems.
    Shi HQ; Zhou XT; Xu XW; Liu NH
    Sci Rep; 2018 Feb; 8(1):2212. PubMed ID: 29396514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon blockade in an optical cavity with one trapped atom.
    Birnbaum KM; Boca A; Miller R; Boozer AD; Northup TE; Kimble HJ
    Nature; 2005 Jul; 436(7047):87-90. PubMed ID: 16001065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of photon blockade effect via quantum interference.
    Zou F; Lai DG; Liao JQ
    Opt Express; 2020 May; 28(11):16175-16190. PubMed ID: 32549445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Squeezing Induced Optical Nonreciprocity.
    Tang L; Tang J; Chen M; Nori F; Xiao M; Xia K
    Phys Rev Lett; 2022 Feb; 128(8):083604. PubMed ID: 35275662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinearity enhancement and photon blockade in hybrid optomechanical systems.
    Yang J; Yang Z; Zhao C; Peng R; Chao S; Zhou L
    Opt Express; 2021 Oct; 29(22):36167-36179. PubMed ID: 34809035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification.
    Qin W; Miranowicz A; Li PB; Lü XY; You JQ; Nori F
    Phys Rev Lett; 2018 Mar; 120(9):093601. PubMed ID: 29547303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators.
    Yin TS; Jin GR; Chen A
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.