These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32680061)

  • 1. Nonreciprocal Goos-Hänchen shift by topological edge states of a magnetic photonic crystal.
    Ma H; Ju C; Xi X; Wu RX
    Opt Express; 2020 Jul; 28(14):19916-19925. PubMed ID: 32680061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustable enhanced Goos-Hänchen shift in a magneto-optic photonic crystal waveguide.
    Huang Y; Tang G; Chen J; Li ZY; Liang W
    Opt Express; 2022 Sep; 30(20):36478-36488. PubMed ID: 36258575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the nonreciprocal Goos-Hänchen shift by the Fano resonance of coupled gyromagnetic chains at normal incidence.
    Ma H; Wu RX
    Opt Express; 2022 Dec; 30(26):46031-46039. PubMed ID: 36558567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of the negative Goos-Hänchen shift of single reflection in a two-dimensional photonic crystal with negative refractive index.
    Jiang Q; Chen J; Liang B; Wang Y; Hu J; Zhuang S
    Opt Lett; 2017 Apr; 42(7):1213-1216. PubMed ID: 28362732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonreciprocal Goos-Hänchen shift in a Dirac semimetal based asymmetric photonic crystal structure.
    Hu P; Zhou J; Song Q; Da H
    Appl Opt; 2024 Jan; 63(2):459-466. PubMed ID: 38227243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical isolation in topological-edge-state photonic arrays.
    El-Ganainy R; Levy M
    Opt Lett; 2015 Nov; 40(22):5275-8. PubMed ID: 26565853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index.
    He J; Yi J; He S
    Opt Express; 2006 Apr; 14(7):3024-9. PubMed ID: 19516442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin canting induced nonreciprocal Goos-Hänchen shifts.
    Macêdo R; Stamps RL; Dumelow T
    Opt Express; 2014 Nov; 22(23):28467-78. PubMed ID: 25402089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goos-Hänchen and Imbert-Fedorov shifts on hyperbolic crystals.
    Wang XG; Zhang YQ; Fu SF; Zhou S; Wang XZ
    Opt Express; 2020 Aug; 28(17):25048-25059. PubMed ID: 32907035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic control of Goos-Hänchen shifts in a yttrium-iron-garnet film.
    Yu W; Sun H; Gao L
    Sci Rep; 2017 Mar; 7():45866. PubMed ID: 28361936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Goos-Hänchen shift in a defective Pell quasiperiodic photonic crystal with monolayer MoS
    Yang X; Liao Z; Chu Z; Zhu X; Da H
    Appl Opt; 2023 Aug; 62(22):5861-5866. PubMed ID: 37706934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Goos-Hänchen shifts at the interfaces between left- and right-handed media.
    Qing DK; Chen G
    Opt Lett; 2004 Apr; 29(8):872-4. PubMed ID: 15119406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of giant Goos-Hänchen shift and high reflectance in Dirac semimetal based multilayered structure.
    Yin D; Liu W; Zhang M; Da H
    Phys Chem Chem Phys; 2024 Apr; 26(14):10974-10981. PubMed ID: 38526392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposite Goos-Hänchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials.
    Hu X; Huang Y; Zhang W; Qing DK; Peng J
    Opt Lett; 2005 Apr; 30(8):899-901. PubMed ID: 15865392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak measurement of magneto-optical Goos-Hänchen effect.
    Tang T; Li J; Luo L; Shen J; Li C; Qin J; Bi L; Hou J
    Opt Express; 2019 Jun; 27(13):17638-17647. PubMed ID: 31252720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant and tunable Goos-Hänchen shift with a high reflectance induced by PT-symmetry in atomic vapor.
    Han P; Li W; Zhou Y; Jiang S; Chang X; Huang A; Zhang H; Xiao Z
    Opt Express; 2021 Sep; 29(19):30436-30448. PubMed ID: 34614773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active manipulation for Goos-Hänchen shift of guided-wave via a metasurface of silicon-nanoscale semi-spheres on SOI waveguide.
    Zhang Y; Sun D; Yu M; Xu Y; Chen Z
    Opt Express; 2024 May; 32(11):19999-20010. PubMed ID: 38859119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical temperature sensing based on the Goos-Hänchen effect.
    Chen CW; Lin WC; Liao LS; Lin ZH; Chiang HP; Leung PT; Sijercic E; Tse WS
    Appl Opt; 2007 Aug; 46(22):5347-51. PubMed ID: 17676150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene.
    Zhao D; Ke S; Liu Q; Wang B; Lu P
    Opt Express; 2018 Feb; 26(3):2817-2828. PubMed ID: 29401817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.