These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32680210)

  • 21. Controlled Growth of Ultra-Thick Polymer Brushes via Surface-Initiated Atom Transfer Radical Polymerization with Active Polymers as Initiators.
    Zeng Y; Xie L; Chi F; Liu D; Wu H; Pan N; Sun G
    Macromol Rapid Commun; 2019 Jul; 40(13):e1900078. PubMed ID: 30969012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and collapse of a surface-grown strong polyelectrolyte brush on sapphire.
    Dunlop IE; Thomas RK; Titmus S; Osborne V; Edmondson S; Huck WT; Klein J
    Langmuir; 2012 Feb; 28(6):3187-93. PubMed ID: 22292571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition.
    Yenice Z; Schön S; Bildirir H; Genzer J; von Klitzing R
    J Phys Chem B; 2015 Aug; 119(32):10348-58. PubMed ID: 26132296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the responsive behavior of polyelectrolyte brushes using electrochemical impedance spectroscopy.
    Zhou F; Hu H; Yu B; Osborne VL; Huck WT; Liu W
    Anal Chem; 2007 Jan; 79(1):176-82. PubMed ID: 17194136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophobic effects within the dynamic pH-response of polybasic tertiary amine methacrylate brushes.
    Willott JD; Humphreys BA; Murdoch TJ; Edmondson S; Webber GB; Wanless EJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3880-90. PubMed ID: 25559878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces.
    Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ
    Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold nanoparticle distribution in polyelectrolyte brushes loaded at different pH conditions.
    Boyaciyan D; Braun L; Löhmann O; Silvi L; Schneck E; von Klitzing R
    J Chem Phys; 2018 Oct; 149(16):163322. PubMed ID: 30384703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning the pH sensitivity of poly(methacrylic acid) brushes.
    Schüwer N; Klok HA
    Langmuir; 2011 Apr; 27(8):4789-96. PubMed ID: 21425827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of topologically anisotropic microparticles and their surface modification with pH responsive polymer brush.
    Ifra ; Saha S
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109894. PubMed ID: 31499968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling pH-responsive polymer brushes to electricity: switching thickness and creating waves of swelling or collapse.
    Dunderdale GJ; Fairclough JP
    Langmuir; 2013 Mar; 29(11):3628-35. PubMed ID: 23441938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal Response of Poly(N-isopropylacrylamide) Brushes Probed by Surface Plasmon Resonance.
    Balamurugan S; Mendez S; Balamurugan SS; O'Brien MJ; López GP
    Langmuir; 2003 Apr; 19(7):2545-2549. PubMed ID: 27709953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions.
    Riley JK; Matyjaszewski K; Tilton RD
    J Colloid Interface Sci; 2018 Sep; 526():114-123. PubMed ID: 29723792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of tapered copolymer brushes via surface-initiated atom transfer radical copolymerization.
    Xu C; Wu T; Mei Y; Drain CM; Batteas JD; Beers KL
    Langmuir; 2005 Nov; 21(24):11136-40. PubMed ID: 16285782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization.
    Ayres N; Cyrus CD; Brittain WJ
    Langmuir; 2007 Mar; 23(7):3744-9. PubMed ID: 17319701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface and bulk collapse transitions of thermoresponsive polymer brushes.
    Laloyaux X; Mathy B; Nysten B; Jonas AM
    Langmuir; 2010 Jan; 26(2):838-47. PubMed ID: 19842635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced specific ion effects in ethylene glycol-based thermoresponsive polymer brushes.
    Murdoch TJ; Humphreys BA; Willott JD; Prescott SW; Nelson A; Webber GB; Wanless EJ
    J Colloid Interface Sci; 2017 Mar; 490():869-878. PubMed ID: 28006724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions.
    Choi EY; Azzaroni O; Cheng N; Zhou F; Kelby T; Huck WT
    Langmuir; 2007 Sep; 23(20):10389-94. PubMed ID: 17760471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.