These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
3. Unidirectional Droplet Transport on the Biofabricated Butterfly Wing. Li P; Zhang B; Zhao H; Zhang L; Wang Z; Xu X; Fu T; Wang X; Hou Y; Fan Y; Wang L Langmuir; 2018 Oct; 34(41):12482-12487. PubMed ID: 30230848 [TBL] [Abstract][Full Text] [Related]
4. Superhydrophobic Shape Memory Polymer Microarrays with Switchable Directional/Antidirectional Droplet Sliding and Optical Performance. Wang W; Lai H; Cheng Z; Fan Z; Zhang D; Wang J; Yu S; Xie Z; Liu Y ACS Appl Mater Interfaces; 2020 Oct; 12(43):49219-49226. PubMed ID: 33050697 [TBL] [Abstract][Full Text] [Related]
5. Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching. Tuo Y; Zhang H; Rong W; Jiang S; Chen W; Liu X Langmuir; 2019 Aug; 35(34):11016-11022. PubMed ID: 31364849 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. Liu C; Ju J; Zheng Y; Jiang L ACS Nano; 2014 Feb; 8(2):1321-9. PubMed ID: 24397580 [TBL] [Abstract][Full Text] [Related]
7. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869 [TBL] [Abstract][Full Text] [Related]
8. Two-Photon Polymerization of Butterfly Wing Scale Inspired Surfaces with Anisotropic Wettability. Ren Z; Yang Z; Srinivasaraghavan Govindarajan R; Madiyar F; Cheng M; Kim D; Jiang Y ACS Appl Mater Interfaces; 2024 Feb; 16(7):9362-9370. PubMed ID: 38324407 [TBL] [Abstract][Full Text] [Related]
9. Biased Motions of a Droplet on the Inclined Micro-conical Superhydrophobic Surface. Li P; Xu X; Yu Y; Wang L; Ji B ACS Appl Mater Interfaces; 2021 Jun; 13(23):27687-27695. PubMed ID: 34100284 [TBL] [Abstract][Full Text] [Related]
10. Designing heterogeneous chemical composition on hierarchical structured copper substrates for the fabrication of superhydrophobic surfaces with controlled adhesion. Cheng Z; Hou R; Du Y; Lai H; Fu K; Zhang N; Sun K ACS Appl Mater Interfaces; 2013 Sep; 5(17):8753-60. PubMed ID: 23919678 [TBL] [Abstract][Full Text] [Related]
11. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. Yang C; Wu L; Li G ACS Appl Mater Interfaces; 2018 Jun; 10(23):20150-20158. PubMed ID: 29806941 [TBL] [Abstract][Full Text] [Related]
12. Robust Cassie state of wetting in transparent superhydrophobic coatings. Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960 [TBL] [Abstract][Full Text] [Related]
13. Droplet Impact on Anisotropic Superhydrophobic Surfaces. Guo C; Zhao D; Sun Y; Wang M; Liu Y Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832 [TBL] [Abstract][Full Text] [Related]
14. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes. Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195 [TBL] [Abstract][Full Text] [Related]
15. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques. Yang X; Liu X; Lu Y; Zhou S; Gao M; Song J; Xu W Sci Rep; 2016 Apr; 6():23985. PubMed ID: 27046771 [TBL] [Abstract][Full Text] [Related]
16. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Bhushan B; Jung YC; Koch K Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P; Maeda Y; Lv F; Takata Y; Orejon D ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681 [TBL] [Abstract][Full Text] [Related]
18. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Bixler GD; Bhushan B Nanoscale; 2013 Sep; 5(17):7685-710. PubMed ID: 23884183 [TBL] [Abstract][Full Text] [Related]
19. Exploring the Role of Habitat on the Wettability of Cicada Wings. Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187 [TBL] [Abstract][Full Text] [Related]
20. Trace Material Capture by Controlled Liquid Droplets on a Superhydrophobic/Hydrophilic Surface. Fukada K; Kawamura N; Shiratori S Anal Chem; 2017 Oct; 89(19):10391-10396. PubMed ID: 28872848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]