BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32680539)

  • 1. Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users.
    Moltedo M; Baček T; Serrien B; Langlois K; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    J Neuroeng Rehabil; 2020 Jul; 17(1):98. PubMed ID: 32680539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S; Malcolm P; Collins SH; De Clercq D
    J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking.
    Moltedo M; Baček T; Verstraten T; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    J Neuroeng Rehabil; 2018 Oct; 15(1):86. PubMed ID: 30285869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
    Arazpour M; Moradi A; Samadian M; Bahramizadeh M; Joghtaei M; Ahmadi Bani M; Hutchins SW; Mardani MA
    Prosthet Orthot Int; 2016 Jun; 40(3):377-83. PubMed ID: 26184037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor modules during adaptation to walking in a powered ankle exoskeleton.
    Jacobs DA; Koller JR; Steele KM; Ferris DP
    J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ; Lewek MD; Sawicki GS
    J Neuroeng Rehabil; 2015 Feb; 12():23. PubMed ID: 25889283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical response to ankle-foot orthosis stiffness during running.
    Russell Esposito E; Choi HS; Owens JG; Blanck RV; Wilken JM
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1125-32. PubMed ID: 26371854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level.
    Waterval NFJ; Nollet F; Harlaar J; Brehm MA
    J Neuroeng Rehabil; 2019 Oct; 16(1):120. PubMed ID: 31623670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of powered ankle-foot orthoses mass distribution on lower limb muscle forces-a simulation study.
    Marconi G; Gopalai AA; Chauhan S
    Med Biol Eng Comput; 2023 May; 61(5):1167-1182. PubMed ID: 36689083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a powered ankle-foot orthosis on perturbed standing balance.
    Emmens AR; van Asseldonk EHF; van der Kooij H
    J Neuroeng Rehabil; 2018 Jun; 15(1):50. PubMed ID: 29914505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.
    Arazpour M; Chitsazan A; Bani MA; Rouhi G; Ghomshe FT; Hutchins SW
    Prosthet Orthot Int; 2013 Oct; 37(5):411-4. PubMed ID: 23327836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking with unilateral ankle-foot unloading: a comparative biomechanical analysis of three assistive devices.
    Saffuri E; Izak E; Tal Y; Kodesh E; Epstein Y; Solav D
    J Neuroeng Rehabil; 2024 Apr; 21(1):67. PubMed ID: 38689255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ankle strategy assistance to improve gait stability using controllers based on in-shoe center of pressure in 2 degree-of-freedom powered ankle-foot orthoses: a clinical study.
    Choi HS; Baek YS; In H
    J Neuroeng Rehabil; 2022 Oct; 19(1):114. PubMed ID: 36284358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait evaluation of the advanced reciprocating gait orthosis with solid versus dorsi flexion assist ankle foot orthoses in paraplegic patients.
    Bani MA; Arazpour M; Ghomshe FT; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Apr; 37(2):161-7. PubMed ID: 22988045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of footplate stiffness on push-off power when walking with posterior leaf spring ankle-foot orthoses.
    Kerkum YL; Philippart W; Houdijk H
    Clin Biomech (Bristol, Avon); 2021 Aug; 88():105422. PubMed ID: 34271367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury.
    Sawicki GS; Domingo A; Ferris DP
    J Neuroeng Rehabil; 2006 Feb; 3():3. PubMed ID: 16504172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.