These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32680649)

  • 1. Improving Bioprinted Volumetric Tumor Microenvironments In Vitro.
    Li J; Parra-Cantu C; Wang Z; Zhang YS
    Trends Cancer; 2020 Sep; 6(9):745-756. PubMed ID: 32680649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in 3D Bioprinting for Cancer Biology and Precision Medicine: From Matrix Design to Application.
    Jung M; Ghamrawi S; Du EY; Gooding JJ; Kavallaris M
    Adv Healthc Mater; 2022 Dec; 11(24):e2200690. PubMed ID: 35866252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converging bioprinting and organoids to better recapitulate the tumor microenvironment.
    Wang X; Luo Y; Ma Y; Wang P; Yao R
    Trends Biotechnol; 2024 May; 42(5):648-663. PubMed ID: 38071145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine.
    Germain N; Dhayer M; Dekiouk S; Marchetti P
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models.
    Monteiro MV; Zhang YS; Gaspar VM; Mano JF
    Trends Biotechnol; 2022 Apr; 40(4):432-447. PubMed ID: 34556340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting complex models of cancer.
    Sharma R; Restan Perez M; da Silva VA; Thomsen J; Bhardwaj L; Andrade TAM; Alhussan A; Willerth SM
    Biomater Sci; 2023 May; 11(10):3414-3430. PubMed ID: 37000528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling.
    Shukla P; Yeleswarapu S; Heinrich MA; Prakash J; Pati F
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35512666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in tumor microenvironment: Applications and challenges of 3D bioprinting.
    Dong Y; Zhou X; Ding Y; Luo Y; Zhao H
    Biochem Biophys Res Commun; 2024 Oct; 730():150339. PubMed ID: 39032359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting tumor models mimic the tumor microenvironment for drug screening.
    Mi X; Su Z; Yue X; Ren Y; Yang X; Qiang L; Kong W; Ma Z; Zhang C; Wang J
    Biomater Sci; 2023 May; 11(11):3813-3827. PubMed ID: 37052182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction to bioprinting of in vitro cancer models.
    Yi HG
    Essays Biochem; 2021 Aug; 65(3):603-610. PubMed ID: 34028520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinted tumor model: a prompt and convenient platform for overcoming immunotherapy resistance by recapitulating the tumor microenvironment.
    Zhang Z; Chen X; Gao S; Fang X; Ren S
    Cell Oncol (Dordr); 2024 Aug; 47(4):1113-1126. PubMed ID: 38520648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinting of gastrointestinal cancer models: A comprehensive review on processing, properties, and therapeutic implications.
    Prashantha K; Krishnappa A; Muthappa M
    Biointerphases; 2023 Mar; 18(2):020801. PubMed ID: 36963961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.
    Albritton JL; Miller JS
    Dis Model Mech; 2017 Jan; 10(1):3-14. PubMed ID: 28067628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review.
    Yu J; Zhang Y; Ran R; Kong Z; Zhao D; Zhao W; Yang Y; Gao L; Zhang Z
    Int J Nanomedicine; 2024; 19():6547-6575. PubMed ID: 38957180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening.
    de Villiers M; Kotzé AF; du Plessis LH
    Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39025118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments.
    Meng F; Meyer CM; Joung D; Vallera DA; McAlpine MC; Panoskaltsis-Mortari A
    Adv Mater; 2019 Mar; 31(10):e1806899. PubMed ID: 30663123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinted liver tissue and disease models: Current advances and future perspectives.
    Sun L; Wang Y; Zhang S; Yang H; Mao Y
    Biomater Adv; 2023 Sep; 152():213499. PubMed ID: 37295133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration.
    Khanna A; Ayan B; Undieh AA; Yang YP; Huang NF
    J Mol Cell Cardiol; 2022 Aug; 169():13-27. PubMed ID: 35569213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems.
    Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.